集合高斯混杂滤波器的自适应协方差参数化技术

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrey A. Popov, Renato Zanetti
{"title":"集合高斯混杂滤波器的自适应协方差参数化技术","authors":"Andrey A. Popov, Renato Zanetti","doi":"10.1137/22m1544312","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1949-A1971, June 2024. <br/> Abstract. The ensemble Gaussian mixture filter (EnGMF) combines the simplicity and power of Gaussian mixture models with the provable convergence and power of particle filters. The quality of the EnGMF heavily depends on the choice of covariance matrix in each Gaussian mixture. This work extends the EnGMF to an adaptive choice of covariance based on the parameterized estimates of the sample covariance matrix. Through the use of the expectation maximization algorithm, optimal choices of the covariance matrix parameters are computed in an online fashion. Numerical experiments on the Lorenz ’63 equations show that the proposed methodology converges to classical results known in particle filtering. Further numerical results with more advanced choices of covariance parameterization and the medium-size Lorenz ’96 equations show that the proposed approach can perform significantly better than the standard EnGMF and other classical data assimilation algorithms.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Adaptive Covariance Parameterization Technique for the Ensemble Gaussian Mixture Filter\",\"authors\":\"Andrey A. Popov, Renato Zanetti\",\"doi\":\"10.1137/22m1544312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1949-A1971, June 2024. <br/> Abstract. The ensemble Gaussian mixture filter (EnGMF) combines the simplicity and power of Gaussian mixture models with the provable convergence and power of particle filters. The quality of the EnGMF heavily depends on the choice of covariance matrix in each Gaussian mixture. This work extends the EnGMF to an adaptive choice of covariance based on the parameterized estimates of the sample covariance matrix. Through the use of the expectation maximization algorithm, optimal choices of the covariance matrix parameters are computed in an online fashion. Numerical experiments on the Lorenz ’63 equations show that the proposed methodology converges to classical results known in particle filtering. Further numerical results with more advanced choices of covariance parameterization and the medium-size Lorenz ’96 equations show that the proposed approach can perform significantly better than the standard EnGMF and other classical data assimilation algorithms.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1544312\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1544312","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 3 期,第 A1949-A1971 页,2024 年 6 月。 摘要集合高斯混合滤波器(EnGMF)结合了高斯混合模型的简单性和强大功能,以及粒子滤波器的可证明收敛性和强大功能。EnGMF 的质量在很大程度上取决于每个高斯混合物中协方差矩阵的选择。本研究将 EnGMF 扩展到基于样本协方差矩阵参数化估计的自适应协方差选择。通过使用期望最大化算法,以在线方式计算协方差矩阵参数的最优选择。对洛伦兹'63方程的数值实验表明,所提出的方法收敛于粒子过滤中已知的经典结果。更高级的协方差参数化选择和中等规模的洛伦兹'96方程的进一步数值结果表明,所提出的方法比标准 EnGMF 和其他经典数据同化算法的性能要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Covariance Parameterization Technique for the Ensemble Gaussian Mixture Filter
SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page A1949-A1971, June 2024.
Abstract. The ensemble Gaussian mixture filter (EnGMF) combines the simplicity and power of Gaussian mixture models with the provable convergence and power of particle filters. The quality of the EnGMF heavily depends on the choice of covariance matrix in each Gaussian mixture. This work extends the EnGMF to an adaptive choice of covariance based on the parameterized estimates of the sample covariance matrix. Through the use of the expectation maximization algorithm, optimal choices of the covariance matrix parameters are computed in an online fashion. Numerical experiments on the Lorenz ’63 equations show that the proposed methodology converges to classical results known in particle filtering. Further numerical results with more advanced choices of covariance parameterization and the medium-size Lorenz ’96 equations show that the proposed approach can perform significantly better than the standard EnGMF and other classical data assimilation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信