Ch. Jyotiprava Dash, S. S. Shrimali, M. Madhu, Randhir Kumar, Partha Pratim Adhikary
{"title":"揭示奥迪沙不同农业气候区的降雨和侵蚀动态,制定可持续的水土保持规划","authors":"Ch. Jyotiprava Dash, S. S. Shrimali, M. Madhu, Randhir Kumar, Partha Pratim Adhikary","doi":"10.1007/s00704-024-05089-0","DOIUrl":null,"url":null,"abstract":"<p>Climate change leads to changes in climatic variables, with rainfall being one of them. Changes in rainfall influence rainfall erosivity and subsequently erosion rates. This study analysed rainfall data from 1901 to 2017 in Odisha, focusing on different agro-climatic zones to discern annual rainfall pattern, its spatial variation, and trend, particularly concerning the rainfall erosivity factor and its impact on soil erosion and agricultural productivity. Notably, the Eastern Ghats Highland region received the highest average annual rainfall of 1578.5 mm, while the Western Undulating Zone received the lowest (1308.4 mm). The rainfall distribution showed spatial variability largely influenced by topography, with areas experiencing orographic lifting receiving higher rainfall. The study observed significant trend in annual rainfall, noting a maximum decline of 1.2 mm yr<sup>−1</sup> in the North Western Plateau, Western Central Table Land, and Western Undulating Zone, whereas the East and South Eastern Plain, Mid Central Table Land, North Eastern Coastal Plain, North Eastern Ghats, and South Eastern Ghats exhibited a noteworthy increase in annual rainfall (0 to 3.9 mm yr<sup>−1</sup>). The decline in rainfall can result in the drying up of water bodies and reduced soil water availability to crop, thereby influencing agricultural production. On the other hand, areas with increased rainfall, may face extreme events which can aggravate soil erosion and thereby loss of soil fertility. Considering the scarcity of pluviographic data in countries like India, Modified Fournier Index (MFI) may be considered as one of the useful methods to capture rainfall’s aggressiveness towards soil erosion through rainfall erosivity (R-factor). Therefore, to evaluate potential soil erosion levels, the Modified Fournier Index method was employed, revealing varying degrees of soil erosiveness across different regions. The Eastern Ghats Highlands exhibited the highest erosion potential. The R-factor, aligned with these spatial patterns, with the Eastern Ghats Highland (12,965.4 MJ mm ha<sup>−1</sup> h<sup>−1</sup> yr<sup>−1</sup>) and South Eastern Ghats (12,242.3 MJ mm ha<sup>−1</sup> h<sup>−1</sup> yr<sup>−1</sup>) regions displaying the highest R-factor values. Furthermore, the research identified areas prone to soil erosion by overlaying R-factor, slope, and land use maps, highlighting vulnerable regions such as Eastern Ghats Highlands, North Eastern Ghats, South Eastern Ghats, and Western Undulating Zone. This comprehensive analysis allows for informed prioritization of conservation efforts and the implementation of appropriate measures like strip cropping of finger millet with groundnut, intercropping finger millet with hedgerows of <i>Gliricidia</i> and <i>Leucaena</i>, bio-engineering measures such as earthen or stone bunds with broom grass in arable land and growing of aromatic grasses like lemon and citronella grass, construction of staggered trenches in non-arable land to mitigate erosion in these susceptible areas.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"10 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling rainfall and erosivity dynamics in Odisha’s varied agro-climatic zones for sustainable soil and water conservation planning\",\"authors\":\"Ch. Jyotiprava Dash, S. S. Shrimali, M. Madhu, Randhir Kumar, Partha Pratim Adhikary\",\"doi\":\"10.1007/s00704-024-05089-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change leads to changes in climatic variables, with rainfall being one of them. Changes in rainfall influence rainfall erosivity and subsequently erosion rates. This study analysed rainfall data from 1901 to 2017 in Odisha, focusing on different agro-climatic zones to discern annual rainfall pattern, its spatial variation, and trend, particularly concerning the rainfall erosivity factor and its impact on soil erosion and agricultural productivity. Notably, the Eastern Ghats Highland region received the highest average annual rainfall of 1578.5 mm, while the Western Undulating Zone received the lowest (1308.4 mm). The rainfall distribution showed spatial variability largely influenced by topography, with areas experiencing orographic lifting receiving higher rainfall. The study observed significant trend in annual rainfall, noting a maximum decline of 1.2 mm yr<sup>−1</sup> in the North Western Plateau, Western Central Table Land, and Western Undulating Zone, whereas the East and South Eastern Plain, Mid Central Table Land, North Eastern Coastal Plain, North Eastern Ghats, and South Eastern Ghats exhibited a noteworthy increase in annual rainfall (0 to 3.9 mm yr<sup>−1</sup>). The decline in rainfall can result in the drying up of water bodies and reduced soil water availability to crop, thereby influencing agricultural production. On the other hand, areas with increased rainfall, may face extreme events which can aggravate soil erosion and thereby loss of soil fertility. Considering the scarcity of pluviographic data in countries like India, Modified Fournier Index (MFI) may be considered as one of the useful methods to capture rainfall’s aggressiveness towards soil erosion through rainfall erosivity (R-factor). Therefore, to evaluate potential soil erosion levels, the Modified Fournier Index method was employed, revealing varying degrees of soil erosiveness across different regions. The Eastern Ghats Highlands exhibited the highest erosion potential. The R-factor, aligned with these spatial patterns, with the Eastern Ghats Highland (12,965.4 MJ mm ha<sup>−1</sup> h<sup>−1</sup> yr<sup>−1</sup>) and South Eastern Ghats (12,242.3 MJ mm ha<sup>−1</sup> h<sup>−1</sup> yr<sup>−1</sup>) regions displaying the highest R-factor values. Furthermore, the research identified areas prone to soil erosion by overlaying R-factor, slope, and land use maps, highlighting vulnerable regions such as Eastern Ghats Highlands, North Eastern Ghats, South Eastern Ghats, and Western Undulating Zone. This comprehensive analysis allows for informed prioritization of conservation efforts and the implementation of appropriate measures like strip cropping of finger millet with groundnut, intercropping finger millet with hedgerows of <i>Gliricidia</i> and <i>Leucaena</i>, bio-engineering measures such as earthen or stone bunds with broom grass in arable land and growing of aromatic grasses like lemon and citronella grass, construction of staggered trenches in non-arable land to mitigate erosion in these susceptible areas.</p>\",\"PeriodicalId\":22945,\"journal\":{\"name\":\"Theoretical and Applied Climatology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00704-024-05089-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00704-024-05089-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Unveiling rainfall and erosivity dynamics in Odisha’s varied agro-climatic zones for sustainable soil and water conservation planning
Climate change leads to changes in climatic variables, with rainfall being one of them. Changes in rainfall influence rainfall erosivity and subsequently erosion rates. This study analysed rainfall data from 1901 to 2017 in Odisha, focusing on different agro-climatic zones to discern annual rainfall pattern, its spatial variation, and trend, particularly concerning the rainfall erosivity factor and its impact on soil erosion and agricultural productivity. Notably, the Eastern Ghats Highland region received the highest average annual rainfall of 1578.5 mm, while the Western Undulating Zone received the lowest (1308.4 mm). The rainfall distribution showed spatial variability largely influenced by topography, with areas experiencing orographic lifting receiving higher rainfall. The study observed significant trend in annual rainfall, noting a maximum decline of 1.2 mm yr−1 in the North Western Plateau, Western Central Table Land, and Western Undulating Zone, whereas the East and South Eastern Plain, Mid Central Table Land, North Eastern Coastal Plain, North Eastern Ghats, and South Eastern Ghats exhibited a noteworthy increase in annual rainfall (0 to 3.9 mm yr−1). The decline in rainfall can result in the drying up of water bodies and reduced soil water availability to crop, thereby influencing agricultural production. On the other hand, areas with increased rainfall, may face extreme events which can aggravate soil erosion and thereby loss of soil fertility. Considering the scarcity of pluviographic data in countries like India, Modified Fournier Index (MFI) may be considered as one of the useful methods to capture rainfall’s aggressiveness towards soil erosion through rainfall erosivity (R-factor). Therefore, to evaluate potential soil erosion levels, the Modified Fournier Index method was employed, revealing varying degrees of soil erosiveness across different regions. The Eastern Ghats Highlands exhibited the highest erosion potential. The R-factor, aligned with these spatial patterns, with the Eastern Ghats Highland (12,965.4 MJ mm ha−1 h−1 yr−1) and South Eastern Ghats (12,242.3 MJ mm ha−1 h−1 yr−1) regions displaying the highest R-factor values. Furthermore, the research identified areas prone to soil erosion by overlaying R-factor, slope, and land use maps, highlighting vulnerable regions such as Eastern Ghats Highlands, North Eastern Ghats, South Eastern Ghats, and Western Undulating Zone. This comprehensive analysis allows for informed prioritization of conservation efforts and the implementation of appropriate measures like strip cropping of finger millet with groundnut, intercropping finger millet with hedgerows of Gliricidia and Leucaena, bio-engineering measures such as earthen or stone bunds with broom grass in arable land and growing of aromatic grasses like lemon and citronella grass, construction of staggered trenches in non-arable land to mitigate erosion in these susceptible areas.
期刊介绍:
Theoretical and Applied Climatology covers the following topics:
- climate modeling, climatic changes and climate forecasting, micro- to mesoclimate, applied meteorology as in agro- and forestmeteorology, biometeorology, building meteorology and atmospheric radiation problems as they relate to the biosphere
- effects of anthropogenic and natural aerosols or gaseous trace constituents
- hardware and software elements of meteorological measurements, including techniques of remote sensing