气候变化下的非稳态低流量频率分析

IF 2.8 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Muhammet Yılmaz, Fatih Tosunoğlu
{"title":"气候变化下的非稳态低流量频率分析","authors":"Muhammet Yılmaz, Fatih Tosunoğlu","doi":"10.1007/s00704-024-05081-8","DOIUrl":null,"url":null,"abstract":"<p>Analysis of low river flows provides important information for effective management of water resources in a region. Despite the critical importance of understanding low flow dynamics, there is a gap in the literature regarding the use of non-stationary models to analyze low flow data under climate change in Turkey. In this research, low flow series from 80 measuring stations in Turkey are investigated by employing both stationary and non-stationary models based on the Generalized Additive Models for Location, Scale and Shape (GAMLSS). For constructing non-stationary models, 31 explanatory variables consisting of time, precipitation, temperature and atmospheric oscillation indices were used to model the parameters of the chosen distributions. The results show that stationary models are more successful at 7 stations, while non-stationary models are more successful at 73 stations. Comparisons between non-stationary models showed that for most stations, the best performing models were non-stationary models with annual precipitation as covariates. In addition, successful results were obtained when Western Mediterranean Oscillation and North Atlantic Oscillation indices were used as explanatory variables. Additionally, this study investigated 20 and 50-year return levels by fitting the non-stationary frequency distribution models for low flows over historical and projection periods under SSP2-4.5 and SSP5-8.5 climate scenarios. GAMLSS incorporated annual total precipitation, which is the most effective explanatory variable for low flows, as a covariate, and thus changes in low flows were analyzed. The results show that decreases are expected in low flows, except for the stations in the upper Euphrates basin compared to the historical period.</p>","PeriodicalId":22945,"journal":{"name":"Theoretical and Applied Climatology","volume":"108 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-stationary low flow frequency analysis under climate change\",\"authors\":\"Muhammet Yılmaz, Fatih Tosunoğlu\",\"doi\":\"10.1007/s00704-024-05081-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analysis of low river flows provides important information for effective management of water resources in a region. Despite the critical importance of understanding low flow dynamics, there is a gap in the literature regarding the use of non-stationary models to analyze low flow data under climate change in Turkey. In this research, low flow series from 80 measuring stations in Turkey are investigated by employing both stationary and non-stationary models based on the Generalized Additive Models for Location, Scale and Shape (GAMLSS). For constructing non-stationary models, 31 explanatory variables consisting of time, precipitation, temperature and atmospheric oscillation indices were used to model the parameters of the chosen distributions. The results show that stationary models are more successful at 7 stations, while non-stationary models are more successful at 73 stations. Comparisons between non-stationary models showed that for most stations, the best performing models were non-stationary models with annual precipitation as covariates. In addition, successful results were obtained when Western Mediterranean Oscillation and North Atlantic Oscillation indices were used as explanatory variables. Additionally, this study investigated 20 and 50-year return levels by fitting the non-stationary frequency distribution models for low flows over historical and projection periods under SSP2-4.5 and SSP5-8.5 climate scenarios. GAMLSS incorporated annual total precipitation, which is the most effective explanatory variable for low flows, as a covariate, and thus changes in low flows were analyzed. The results show that decreases are expected in low flows, except for the stations in the upper Euphrates basin compared to the historical period.</p>\",\"PeriodicalId\":22945,\"journal\":{\"name\":\"Theoretical and Applied Climatology\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Climatology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00704-024-05081-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00704-024-05081-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

河流低流量分析为有效管理一个地区的水资源提供了重要信息。尽管了解低流量动态至关重要,但在使用非稳态模型分析土耳其气候变化下的低流量数据方面还存在文献空白。本研究采用基于位置、尺度和形状的广义相加模型(GAMLSS)的静态和非静态模型,对土耳其 80 个测量站的低流量序列进行了研究。在构建非稳态模型时,使用了 31 个由时间、降水、温度和大气振荡指数组成的解释变量来模拟所选分布的参数。结果表明,静态模型在 7 个站点比较成功,而非静态模型在 73 个站点比较成功。非稳态模型之间的比较表明,对大多数站点而言,性能最好的模型是以年降水量为协变量的非稳态模型。此外,以西地中海涛动指数和北大西洋涛动指数作为解释变量也取得了成功。此外,本研究还通过对 SSP2-4.5 和 SSP5-8.5 气候情景下历史和预测时期的低流量非稳态频率分布模型进行拟合,调查了 20 年和 50 年的回归水平。GAMLSS 将对低流量最有效的解释变量--年降水总量作为协变量,从而分析了低流量的变化。结果表明,与历史时期相比,除幼发拉底河上游流域的站点外,低流量预计会减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Non-stationary low flow frequency analysis under climate change

Non-stationary low flow frequency analysis under climate change

Analysis of low river flows provides important information for effective management of water resources in a region. Despite the critical importance of understanding low flow dynamics, there is a gap in the literature regarding the use of non-stationary models to analyze low flow data under climate change in Turkey. In this research, low flow series from 80 measuring stations in Turkey are investigated by employing both stationary and non-stationary models based on the Generalized Additive Models for Location, Scale and Shape (GAMLSS). For constructing non-stationary models, 31 explanatory variables consisting of time, precipitation, temperature and atmospheric oscillation indices were used to model the parameters of the chosen distributions. The results show that stationary models are more successful at 7 stations, while non-stationary models are more successful at 73 stations. Comparisons between non-stationary models showed that for most stations, the best performing models were non-stationary models with annual precipitation as covariates. In addition, successful results were obtained when Western Mediterranean Oscillation and North Atlantic Oscillation indices were used as explanatory variables. Additionally, this study investigated 20 and 50-year return levels by fitting the non-stationary frequency distribution models for low flows over historical and projection periods under SSP2-4.5 and SSP5-8.5 climate scenarios. GAMLSS incorporated annual total precipitation, which is the most effective explanatory variable for low flows, as a covariate, and thus changes in low flows were analyzed. The results show that decreases are expected in low flows, except for the stations in the upper Euphrates basin compared to the historical period.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Applied Climatology
Theoretical and Applied Climatology 地学-气象与大气科学
CiteScore
6.00
自引率
11.80%
发文量
376
审稿时长
4.3 months
期刊介绍: Theoretical and Applied Climatology covers the following topics: - climate modeling, climatic changes and climate forecasting, micro- to mesoclimate, applied meteorology as in agro- and forestmeteorology, biometeorology, building meteorology and atmospheric radiation problems as they relate to the biosphere - effects of anthropogenic and natural aerosols or gaseous trace constituents - hardware and software elements of meteorological measurements, including techniques of remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信