{"title":"随机图的最小连接支配集和骨干图","authors":"Yusupjan Habibulla, Hai-Jun Zhou","doi":"10.1088/1742-5468/ad4026","DOIUrl":null,"url":null,"abstract":"We study the minimum dominating set problem as a representative combinatorial optimization challenge with a global topological constraint. The requirement that the backbone induced by the vertices of a dominating set should be a connected subgraph makes the problem rather nontrivial to investigate by statistical physics methods. Here, we convert this global connectivity constraint into a set of local vertex constraints and build a spin glass model with only five coarse-grained vertex states. We derive a set of coarse-grained belief-propagation equations and obtain theoretical predictions of the relative sizes of the minimum dominating sets for regular random and Erdös–Rényi random graph ensembles. We also implement an efficient message-passing algorithm to construct close-to-minimum connected dominating sets and backbone subgraphs for single random graph instances. Our theoretical strategy may also be applicable to some other global topological constraints.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"195 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimum connected dominating set and backbone of a random graph\",\"authors\":\"Yusupjan Habibulla, Hai-Jun Zhou\",\"doi\":\"10.1088/1742-5468/ad4026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the minimum dominating set problem as a representative combinatorial optimization challenge with a global topological constraint. The requirement that the backbone induced by the vertices of a dominating set should be a connected subgraph makes the problem rather nontrivial to investigate by statistical physics methods. Here, we convert this global connectivity constraint into a set of local vertex constraints and build a spin glass model with only five coarse-grained vertex states. We derive a set of coarse-grained belief-propagation equations and obtain theoretical predictions of the relative sizes of the minimum dominating sets for regular random and Erdös–Rényi random graph ensembles. We also implement an efficient message-passing algorithm to construct close-to-minimum connected dominating sets and backbone subgraphs for single random graph instances. Our theoretical strategy may also be applicable to some other global topological constraints.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad4026\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad4026","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Minimum connected dominating set and backbone of a random graph
We study the minimum dominating set problem as a representative combinatorial optimization challenge with a global topological constraint. The requirement that the backbone induced by the vertices of a dominating set should be a connected subgraph makes the problem rather nontrivial to investigate by statistical physics methods. Here, we convert this global connectivity constraint into a set of local vertex constraints and build a spin glass model with only five coarse-grained vertex states. We derive a set of coarse-grained belief-propagation equations and obtain theoretical predictions of the relative sizes of the minimum dominating sets for regular random and Erdös–Rényi random graph ensembles. We also implement an efficient message-passing algorithm to construct close-to-minimum connected dominating sets and backbone subgraphs for single random graph instances. Our theoretical strategy may also be applicable to some other global topological constraints.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina