{"title":"驱动型玻色-哈伯德模型的光谱统计","authors":"Jesús Mateos, Fernando Sols and Charles Creffield","doi":"10.1088/1742-5468/ad4e26","DOIUrl":null,"url":null,"abstract":"We study the spectral statistics of a one-dimensional Bose–Hubbard model subjected to kinetic driving; a form of Floquet engineering where the kinetic energy is periodically driven in time with a zero time-average. As the amplitude of the driving is increased, the ground state of the resulting flat-band system passes from the Mott insulator regime to an exotic superfluid. We show that this transition is accompanied by a change in the system’s spectral statistics from Poisson to GOE-type. Remarkably, and unlike in the conventional Bose–Hubbard model which we use as a benchmark, the details of the GOE statistics are sensitive to the parity of both the particle number and the lattice sites. We show how this effect arises from a hidden symmetry of the Hamiltonian produced by this form of Floquet driving.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"142 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral statistics of driven Bose-Hubbard models\",\"authors\":\"Jesús Mateos, Fernando Sols and Charles Creffield\",\"doi\":\"10.1088/1742-5468/ad4e26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the spectral statistics of a one-dimensional Bose–Hubbard model subjected to kinetic driving; a form of Floquet engineering where the kinetic energy is periodically driven in time with a zero time-average. As the amplitude of the driving is increased, the ground state of the resulting flat-band system passes from the Mott insulator regime to an exotic superfluid. We show that this transition is accompanied by a change in the system’s spectral statistics from Poisson to GOE-type. Remarkably, and unlike in the conventional Bose–Hubbard model which we use as a benchmark, the details of the GOE statistics are sensitive to the parity of both the particle number and the lattice sites. We show how this effect arises from a hidden symmetry of the Hamiltonian produced by this form of Floquet driving.\",\"PeriodicalId\":17207,\"journal\":{\"name\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"volume\":\"142 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Mechanics: Theory and Experiment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1742-5468/ad4e26\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad4e26","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
We study the spectral statistics of a one-dimensional Bose–Hubbard model subjected to kinetic driving; a form of Floquet engineering where the kinetic energy is periodically driven in time with a zero time-average. As the amplitude of the driving is increased, the ground state of the resulting flat-band system passes from the Mott insulator regime to an exotic superfluid. We show that this transition is accompanied by a change in the system’s spectral statistics from Poisson to GOE-type. Remarkably, and unlike in the conventional Bose–Hubbard model which we use as a benchmark, the details of the GOE statistics are sensitive to the parity of both the particle number and the lattice sites. We show how this effect arises from a hidden symmetry of the Hamiltonian produced by this form of Floquet driving.
期刊介绍:
JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged.
The journal covers different topics which correspond to the following keyword sections.
1. Quantum statistical physics, condensed matter, integrable systems
Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo
2. Classical statistical mechanics, equilibrium and non-equilibrium
Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo
3. Disordered systems, classical and quantum
Scientific Directors: Eduardo Fradkin and Riccardo Zecchina
4. Interdisciplinary statistical mechanics
Scientific Directors: Matteo Marsili and Riccardo Zecchina
5. Biological modelling and information
Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina