Demin Gao;Liyuan Ou;Ye Liu;Qing Yang;Honggang Wang
{"title":"DeepSpoof:跨技术多媒体通信中基于深度强化学习的欺骗攻击","authors":"Demin Gao;Liyuan Ou;Ye Liu;Qing Yang;Honggang Wang","doi":"10.1109/TMM.2024.3414660","DOIUrl":null,"url":null,"abstract":"Cross-technology communication is essential for the Internet of Multimedia Things (IoMT) applications, enabling seamless integration of diverse media formats, optimized data transmission, and improved user experiences across devices and platforms. This integration drives innovative and efficient IoMT solutions in areas like smart homes, smart cities, and healthcare monitoring. However, this integration of diverse wireless standards within cross-technology multimedia communication increases the susceptibility of wireless networks to attacks. Current methods lack robust authentication mechanisms, leaving them vulnerable to spoofing attacks. To mitigate this concern, we introduce DeepSpoof, a spoofing system that utilizes deep learning to analyze historical wireless traffic and anticipate future patterns in the IoMT context. This innovative approach significantly boosts an attacker's impersonation capabilities and offers a higher degree of covertness compared to traditional spoofing methods. Rigorous evaluations, leveraging both simulated and real-world data, confirm that DeepSpoof significantly elevates the average success rate of attacks.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"10879-10891"},"PeriodicalIF":8.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DeepSpoof: Deep Reinforcement Learning-Based Spoofing Attack in Cross-Technology Multimedia Communication\",\"authors\":\"Demin Gao;Liyuan Ou;Ye Liu;Qing Yang;Honggang Wang\",\"doi\":\"10.1109/TMM.2024.3414660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-technology communication is essential for the Internet of Multimedia Things (IoMT) applications, enabling seamless integration of diverse media formats, optimized data transmission, and improved user experiences across devices and platforms. This integration drives innovative and efficient IoMT solutions in areas like smart homes, smart cities, and healthcare monitoring. However, this integration of diverse wireless standards within cross-technology multimedia communication increases the susceptibility of wireless networks to attacks. Current methods lack robust authentication mechanisms, leaving them vulnerable to spoofing attacks. To mitigate this concern, we introduce DeepSpoof, a spoofing system that utilizes deep learning to analyze historical wireless traffic and anticipate future patterns in the IoMT context. This innovative approach significantly boosts an attacker's impersonation capabilities and offers a higher degree of covertness compared to traditional spoofing methods. Rigorous evaluations, leveraging both simulated and real-world data, confirm that DeepSpoof significantly elevates the average success rate of attacks.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"10879-10891\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10566040/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10566040/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
DeepSpoof: Deep Reinforcement Learning-Based Spoofing Attack in Cross-Technology Multimedia Communication
Cross-technology communication is essential for the Internet of Multimedia Things (IoMT) applications, enabling seamless integration of diverse media formats, optimized data transmission, and improved user experiences across devices and platforms. This integration drives innovative and efficient IoMT solutions in areas like smart homes, smart cities, and healthcare monitoring. However, this integration of diverse wireless standards within cross-technology multimedia communication increases the susceptibility of wireless networks to attacks. Current methods lack robust authentication mechanisms, leaving them vulnerable to spoofing attacks. To mitigate this concern, we introduce DeepSpoof, a spoofing system that utilizes deep learning to analyze historical wireless traffic and anticipate future patterns in the IoMT context. This innovative approach significantly boosts an attacker's impersonation capabilities and offers a higher degree of covertness compared to traditional spoofing methods. Rigorous evaluations, leveraging both simulated and real-world data, confirm that DeepSpoof significantly elevates the average success rate of attacks.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.