Zi‐Jun Chen, Hong‐Hao Ma, Qing‐Tao Xu, Ze He, Zhao‐Wu Shen, Lu‐Qing Wang
{"title":"新型装药结构发射系统的数值模拟和优化设计","authors":"Zi‐Jun Chen, Hong‐Hao Ma, Qing‐Tao Xu, Ze He, Zhao‐Wu Shen, Lu‐Qing Wang","doi":"10.1002/prep.202300326","DOIUrl":null,"url":null,"abstract":"In this paper, a launching system with a novel charge structure was proposed to improve the interior ballistic performance. According to the working characteristics of the novel launching system, a lumped‐parameter model was established. The parameters of the propellant and the interior ballistic characteristics of the launching system were obtained by experiments. According to the experimental results, the accuracy of the lumped‐parameter model was verified by code. The simulated results were in good agreement with the experimental results. Based on the lumped‐parameter model, the propellant parameters, such as the impetus, the burning rate, the web thickness, and the charge mass, were investigated to understand the interior ballistic performances of the launching system. An optimization method was proposed to design the propellant parameters of the launching system. The results show that the optimal scheme can increase the velocity of the projectile by 9.54 %. Compared with the traditional launching method, the velocity of the projectile is increased by 37.09 % while the peak pressure in the barrel has no change.","PeriodicalId":20800,"journal":{"name":"Propellants, Explosives, Pyrotechnics","volume":"2012 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation and optimized design of a launching system with a novel charge structure\",\"authors\":\"Zi‐Jun Chen, Hong‐Hao Ma, Qing‐Tao Xu, Ze He, Zhao‐Wu Shen, Lu‐Qing Wang\",\"doi\":\"10.1002/prep.202300326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a launching system with a novel charge structure was proposed to improve the interior ballistic performance. According to the working characteristics of the novel launching system, a lumped‐parameter model was established. The parameters of the propellant and the interior ballistic characteristics of the launching system were obtained by experiments. According to the experimental results, the accuracy of the lumped‐parameter model was verified by code. The simulated results were in good agreement with the experimental results. Based on the lumped‐parameter model, the propellant parameters, such as the impetus, the burning rate, the web thickness, and the charge mass, were investigated to understand the interior ballistic performances of the launching system. An optimization method was proposed to design the propellant parameters of the launching system. The results show that the optimal scheme can increase the velocity of the projectile by 9.54 %. Compared with the traditional launching method, the velocity of the projectile is increased by 37.09 % while the peak pressure in the barrel has no change.\",\"PeriodicalId\":20800,\"journal\":{\"name\":\"Propellants, Explosives, Pyrotechnics\",\"volume\":\"2012 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propellants, Explosives, Pyrotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/prep.202300326\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propellants, Explosives, Pyrotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/prep.202300326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Numerical simulation and optimized design of a launching system with a novel charge structure
In this paper, a launching system with a novel charge structure was proposed to improve the interior ballistic performance. According to the working characteristics of the novel launching system, a lumped‐parameter model was established. The parameters of the propellant and the interior ballistic characteristics of the launching system were obtained by experiments. According to the experimental results, the accuracy of the lumped‐parameter model was verified by code. The simulated results were in good agreement with the experimental results. Based on the lumped‐parameter model, the propellant parameters, such as the impetus, the burning rate, the web thickness, and the charge mass, were investigated to understand the interior ballistic performances of the launching system. An optimization method was proposed to design the propellant parameters of the launching system. The results show that the optimal scheme can increase the velocity of the projectile by 9.54 %. Compared with the traditional launching method, the velocity of the projectile is increased by 37.09 % while the peak pressure in the barrel has no change.
期刊介绍:
Propellants, Explosives, Pyrotechnics (PEP) is an international, peer-reviewed journal containing Full Papers, Short Communications, critical Reviews, as well as details of forthcoming meetings and book reviews concerned with the research, development and production in relation to propellants, explosives, and pyrotechnics for all applications. Being the official journal of the International Pyrotechnics Society, PEP is a vital medium and the state-of-the-art forum for the exchange of science and technology in energetic materials. PEP is published 12 times a year.
PEP is devoted to advancing the science, technology and engineering elements in the storage and manipulation of chemical energy, specifically in propellants, explosives and pyrotechnics. Articles should provide scientific context, articulate impact, and be generally applicable to the energetic materials and wider scientific community. PEP is not a defense journal and does not feature the weaponization of materials and related systems or include information that would aid in the development or utilization of improvised explosive systems, e.g., synthesis routes to terrorist explosives.