关于用于光电应用的立方包晶半导体 InXF3(X = Be 和 Ca)的结构、电子和光学特性的 DFT 研究

IF 1.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
M Mohammed Shoaib Hussain, N Syed Kaleemullah, G Ajay and M Mohamed Sheik Sirajuddeen
{"title":"关于用于光电应用的立方包晶半导体 InXF3(X = Be 和 Ca)的结构、电子和光学特性的 DFT 研究","authors":"M Mohammed Shoaib Hussain, N Syed Kaleemullah, G Ajay and M Mohamed Sheik Sirajuddeen","doi":"10.1088/1361-651x/ad5a2c","DOIUrl":null,"url":null,"abstract":"First principles calculations were employed to study the structural, electronic and optical properties of Indium based cubic perovskite materials, specifically focusing on InBeF3 and InCaF3 compounds. The generalized gradient approximation Perdew–Burke–Ernzerhof (GGA_PBE) approximation and Tran–Blaha modified Becke–Johnson (TB-mBJ) approximations were used to study and compare the electronic and optical properties. The compound InBeF3 is predicted to have an indirect band gap of 2.51 eV in GGA_PBE and 2.96 eV in TB-mBJ. InCaF3 is found to have a direct wide band gap of 3.61 eV in GGA_PBE and 4.37 eV in TB-mBJ approximation. The partial density of states predicts the significance of In-5p and F-2p states in the conduction and valence bands, respectively. The dielectric constants decrease under the TB-mBJ approximation, with InCaF3 demonstrating lower values owing to its larger band gap. Optical activity analysis indicates transparency for both compounds with notable absorption peaks, suggesting potential applications in transparent coatings. Refractive indices decrease with photon energy, with values dropping below 1.0 in the TB-mBJ approximation, indicating superluminal behavior in wave propagation. The drop in refractive index value below1.0 is earlier for InCaF3 than InBeF3. Examination of the extinction coefficient reveals UV absorption peaks, indicating potential for optoelectronic applications. From this study it can be noticed that the compounds under study can be used for optoelectronic applications, supported by their predicted structural and optical properties study.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"5 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT study on structural, electronic, and optical properties of cubic perovskite semiconductors InXF3 (X = Be and Ca) for optoelectronic applications\",\"authors\":\"M Mohammed Shoaib Hussain, N Syed Kaleemullah, G Ajay and M Mohamed Sheik Sirajuddeen\",\"doi\":\"10.1088/1361-651x/ad5a2c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First principles calculations were employed to study the structural, electronic and optical properties of Indium based cubic perovskite materials, specifically focusing on InBeF3 and InCaF3 compounds. The generalized gradient approximation Perdew–Burke–Ernzerhof (GGA_PBE) approximation and Tran–Blaha modified Becke–Johnson (TB-mBJ) approximations were used to study and compare the electronic and optical properties. The compound InBeF3 is predicted to have an indirect band gap of 2.51 eV in GGA_PBE and 2.96 eV in TB-mBJ. InCaF3 is found to have a direct wide band gap of 3.61 eV in GGA_PBE and 4.37 eV in TB-mBJ approximation. The partial density of states predicts the significance of In-5p and F-2p states in the conduction and valence bands, respectively. The dielectric constants decrease under the TB-mBJ approximation, with InCaF3 demonstrating lower values owing to its larger band gap. Optical activity analysis indicates transparency for both compounds with notable absorption peaks, suggesting potential applications in transparent coatings. Refractive indices decrease with photon energy, with values dropping below 1.0 in the TB-mBJ approximation, indicating superluminal behavior in wave propagation. The drop in refractive index value below1.0 is earlier for InCaF3 than InBeF3. Examination of the extinction coefficient reveals UV absorption peaks, indicating potential for optoelectronic applications. From this study it can be noticed that the compounds under study can be used for optoelectronic applications, supported by their predicted structural and optical properties study.\",\"PeriodicalId\":18648,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad5a2c\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad5a2c","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们采用第一性原理计算来研究铟基立方包晶材料的结构、电子和光学特性,特别是 InBeF3 和 InCaF3 化合物。研究采用了广义梯度近似 Perdew-Burke-Ernzerhof (GGA_PBE)近似和 Tran-Blaha 修正 Becke-Johnson (TB-mBJ)近似来研究和比较电子和光学性质。根据 GGA_PBE 和 TB-mBJ 的预测,化合物 InBeF3 的间接带隙分别为 2.51 eV 和 2.96 eV。在 GGA_PBE 和 TB-mBJ 近似中,InCaF3 的直接宽带隙分别为 3.61 eV 和 4.37 eV。部分状态密度预测了 In-5p 和 F-2p 状态分别在导带和价带中的重要性。在 TB-mBJ 近似条件下,介电常数下降,InCaF3 的介电常数值较低,因为它的带隙较大。光学活性分析表明,这两种化合物都具有明显的吸收峰,具有透明涂层的应用潜力。折射率随光子能量的增加而降低,在 TB-mBJ 近似值中,折射率值降至 1.0 以下,这表明波的传播具有超光速行为。InCaF3 折射率值下降到 1.0 以下的时间早于 InBeF3。对消光系数的研究发现了紫外线吸收峰,这表明它具有光电应用的潜力。从这项研究中可以看出,所研究的化合物可用于光电应用,其预测的结构和光学特性研究为其提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A DFT study on structural, electronic, and optical properties of cubic perovskite semiconductors InXF3 (X = Be and Ca) for optoelectronic applications
First principles calculations were employed to study the structural, electronic and optical properties of Indium based cubic perovskite materials, specifically focusing on InBeF3 and InCaF3 compounds. The generalized gradient approximation Perdew–Burke–Ernzerhof (GGA_PBE) approximation and Tran–Blaha modified Becke–Johnson (TB-mBJ) approximations were used to study and compare the electronic and optical properties. The compound InBeF3 is predicted to have an indirect band gap of 2.51 eV in GGA_PBE and 2.96 eV in TB-mBJ. InCaF3 is found to have a direct wide band gap of 3.61 eV in GGA_PBE and 4.37 eV in TB-mBJ approximation. The partial density of states predicts the significance of In-5p and F-2p states in the conduction and valence bands, respectively. The dielectric constants decrease under the TB-mBJ approximation, with InCaF3 demonstrating lower values owing to its larger band gap. Optical activity analysis indicates transparency for both compounds with notable absorption peaks, suggesting potential applications in transparent coatings. Refractive indices decrease with photon energy, with values dropping below 1.0 in the TB-mBJ approximation, indicating superluminal behavior in wave propagation. The drop in refractive index value below1.0 is earlier for InCaF3 than InBeF3. Examination of the extinction coefficient reveals UV absorption peaks, indicating potential for optoelectronic applications. From this study it can be noticed that the compounds under study can be used for optoelectronic applications, supported by their predicted structural and optical properties study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
96
审稿时长
1.7 months
期刊介绍: Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation. Subject coverage: Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信