Afshin Honarbakhsh, Ebrahim Mahmoudabadi, Sayed Fakhreddin Afzali, Mohammad Khajehzadeh
{"title":"利用遥感和数据挖掘算法对伊朗西北部流域土壤盐度进行空间预测","authors":"Afshin Honarbakhsh, Ebrahim Mahmoudabadi, Sayed Fakhreddin Afzali, Mohammad Khajehzadeh","doi":"10.1007/s12524-024-01906-1","DOIUrl":null,"url":null,"abstract":"<p>Soil salinity plays an important role in agriculture production and land degradation, especially in semi-arid and arid regions. Accurate prediction of soil salinity requires evaluating crop yield, native vegetation situations, and irrigation command area management. In this study, MLR (multiple linear regression), SVMs (support vector machines) and ANNs (artificial neural networks) models were employed by using Landsat-8 OLI and GIS (Geographical Information Systems) techniques for predicting soil salinity in northwest Iran. Soil salinity was measured at 92 points (in a depth of 0–20 cm). The vegetation and soil salinity spectral indices, extracted from Landsat-8 OLI, were employed as input data. The results of this study indicated that the best-developed model for predicting soil salinity was the SVM-based model with R<sup>2</sup> (0.874) and RPD (2.32) and the lowest RMSE (11.20 dS m<sup>−1</sup>). Moreover, the performance of developed models under different vegetation coverage showed that the SVM-based model yielded the best result. It was concluded that the SVM-based model is reliable for quantifying soil salinization.</p>","PeriodicalId":17510,"journal":{"name":"Journal of the Indian Society of Remote Sensing","volume":"26 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Prediction of Soil Salinity by Using Remote Sensing and Data Mining Algorithms at Watershed Scale, Northwest Iran\",\"authors\":\"Afshin Honarbakhsh, Ebrahim Mahmoudabadi, Sayed Fakhreddin Afzali, Mohammad Khajehzadeh\",\"doi\":\"10.1007/s12524-024-01906-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil salinity plays an important role in agriculture production and land degradation, especially in semi-arid and arid regions. Accurate prediction of soil salinity requires evaluating crop yield, native vegetation situations, and irrigation command area management. In this study, MLR (multiple linear regression), SVMs (support vector machines) and ANNs (artificial neural networks) models were employed by using Landsat-8 OLI and GIS (Geographical Information Systems) techniques for predicting soil salinity in northwest Iran. Soil salinity was measured at 92 points (in a depth of 0–20 cm). The vegetation and soil salinity spectral indices, extracted from Landsat-8 OLI, were employed as input data. The results of this study indicated that the best-developed model for predicting soil salinity was the SVM-based model with R<sup>2</sup> (0.874) and RPD (2.32) and the lowest RMSE (11.20 dS m<sup>−1</sup>). Moreover, the performance of developed models under different vegetation coverage showed that the SVM-based model yielded the best result. It was concluded that the SVM-based model is reliable for quantifying soil salinization.</p>\",\"PeriodicalId\":17510,\"journal\":{\"name\":\"Journal of the Indian Society of Remote Sensing\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Society of Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12524-024-01906-1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Society of Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12524-024-01906-1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatial Prediction of Soil Salinity by Using Remote Sensing and Data Mining Algorithms at Watershed Scale, Northwest Iran
Soil salinity plays an important role in agriculture production and land degradation, especially in semi-arid and arid regions. Accurate prediction of soil salinity requires evaluating crop yield, native vegetation situations, and irrigation command area management. In this study, MLR (multiple linear regression), SVMs (support vector machines) and ANNs (artificial neural networks) models were employed by using Landsat-8 OLI and GIS (Geographical Information Systems) techniques for predicting soil salinity in northwest Iran. Soil salinity was measured at 92 points (in a depth of 0–20 cm). The vegetation and soil salinity spectral indices, extracted from Landsat-8 OLI, were employed as input data. The results of this study indicated that the best-developed model for predicting soil salinity was the SVM-based model with R2 (0.874) and RPD (2.32) and the lowest RMSE (11.20 dS m−1). Moreover, the performance of developed models under different vegetation coverage showed that the SVM-based model yielded the best result. It was concluded that the SVM-based model is reliable for quantifying soil salinization.
期刊介绍:
The aims and scope of the Journal of the Indian Society of Remote Sensing are to help towards advancement, dissemination and application of the knowledge of Remote Sensing technology, which is deemed to include photo interpretation, photogrammetry, aerial photography, image processing, and other related technologies in the field of survey, planning and management of natural resources and other areas of application where the technology is considered to be appropriate, to promote interaction among all persons, bodies, institutions (private and/or state-owned) and industries interested in achieving advancement, dissemination and application of the technology, to encourage and undertake research in remote sensing and related technologies and to undertake and execute all acts which shall promote all or any of the aims and objectives of the Indian Society of Remote Sensing.