提高云数据中心的虚拟机放置效率:使用多目标强化学习和聚类策略的混合方法

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Arezoo Ghasemi, Abolfazl Toroghi Haghighat, Amin Keshavarzi
{"title":"提高云数据中心的虚拟机放置效率:使用多目标强化学习和聚类策略的混合方法","authors":"Arezoo Ghasemi, Abolfazl Toroghi Haghighat, Amin Keshavarzi","doi":"10.1007/s00607-024-01311-z","DOIUrl":null,"url":null,"abstract":"<p>Deploying virtual machines poses a significant challenge for cloud data centers, requiring careful consideration of various objectives such as minimizing energy consumption, resource wastage, ensuring load balancing, and meeting service level agreements. While researchers have explored multi-objective methods to tackle virtual machine placement, evaluating potential solutions remains complex in such scenarios. In this paper, we introduce two novel multi-objective algorithms tailored to address this challenge. The VMPMFuzzyORL method employs reinforcement learning for virtual machine placement, with candidate solutions assessed using a fuzzy system. While practical, incorporating fuzzy systems introduces notable runtime overhead. To mitigate this, we propose MRRL, an alternative approach involving initial virtual machine clustering using the k-means algorithm, followed by optimized placement utilizing a customized reinforcement learning strategy with multiple reward signals. Extensive simulations highlight the significant advantages of these approaches over existing techniques, particularly energy efficiency, resource utilization, load balancing, and overall execution time.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"2 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing virtual machine placement efficiency in cloud data centers: a hybrid approach using multi-objective reinforcement learning and clustering strategies\",\"authors\":\"Arezoo Ghasemi, Abolfazl Toroghi Haghighat, Amin Keshavarzi\",\"doi\":\"10.1007/s00607-024-01311-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deploying virtual machines poses a significant challenge for cloud data centers, requiring careful consideration of various objectives such as minimizing energy consumption, resource wastage, ensuring load balancing, and meeting service level agreements. While researchers have explored multi-objective methods to tackle virtual machine placement, evaluating potential solutions remains complex in such scenarios. In this paper, we introduce two novel multi-objective algorithms tailored to address this challenge. The VMPMFuzzyORL method employs reinforcement learning for virtual machine placement, with candidate solutions assessed using a fuzzy system. While practical, incorporating fuzzy systems introduces notable runtime overhead. To mitigate this, we propose MRRL, an alternative approach involving initial virtual machine clustering using the k-means algorithm, followed by optimized placement utilizing a customized reinforcement learning strategy with multiple reward signals. Extensive simulations highlight the significant advantages of these approaches over existing techniques, particularly energy efficiency, resource utilization, load balancing, and overall execution time.</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01311-z\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01311-z","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

部署虚拟机是云数据中心面临的一项重大挑战,需要仔细考虑各种目标,如尽量减少能耗、资源浪费、确保负载平衡和满足服务水平协议。虽然研究人员已经探索了解决虚拟机部署问题的多目标方法,但在这种情况下,评估潜在的解决方案仍然很复杂。在本文中,我们介绍了两种为应对这一挑战而量身定制的新型多目标算法。VMPMFuzzyORL 方法采用强化学习来处理虚拟机放置问题,并使用模糊系统来评估候选解决方案。模糊系统虽然实用,但会带来显著的运行时开销。为了缓解这一问题,我们提出了 MRRL,这是一种替代方法,涉及使用 k-means 算法对虚拟机进行初始聚类,然后利用具有多重奖励信号的定制强化学习策略优化放置。大量的仿真突出显示了这些方法相对于现有技术的显著优势,特别是能源效率、资源利用率、负载平衡和整体执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing virtual machine placement efficiency in cloud data centers: a hybrid approach using multi-objective reinforcement learning and clustering strategies

Enhancing virtual machine placement efficiency in cloud data centers: a hybrid approach using multi-objective reinforcement learning and clustering strategies

Deploying virtual machines poses a significant challenge for cloud data centers, requiring careful consideration of various objectives such as minimizing energy consumption, resource wastage, ensuring load balancing, and meeting service level agreements. While researchers have explored multi-objective methods to tackle virtual machine placement, evaluating potential solutions remains complex in such scenarios. In this paper, we introduce two novel multi-objective algorithms tailored to address this challenge. The VMPMFuzzyORL method employs reinforcement learning for virtual machine placement, with candidate solutions assessed using a fuzzy system. While practical, incorporating fuzzy systems introduces notable runtime overhead. To mitigate this, we propose MRRL, an alternative approach involving initial virtual machine clustering using the k-means algorithm, followed by optimized placement utilizing a customized reinforcement learning strategy with multiple reward signals. Extensive simulations highlight the significant advantages of these approaches over existing techniques, particularly energy efficiency, resource utilization, load balancing, and overall execution time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信