针对用户数据空间分布不平衡的无线网络的基于集合和成本敏感学习的根本原因诊断方案

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qi Wang, Zhiwen Pan, Nan Liu
{"title":"针对用户数据空间分布不平衡的无线网络的基于集合和成本敏感学习的根本原因诊断方案","authors":"Qi Wang, Zhiwen Pan, Nan Liu","doi":"10.1007/s11432-023-4055-1","DOIUrl":null,"url":null,"abstract":"<p>A novel feature extraction method that can tolerate imbalanced user data is proposed. A cost-sensitive SVM assigns different misclassification costs to faults with different severity levels to optimize the cause diagnosis process. The simulation results demonstrate the effectiveness and superiority of the proposed algorithm.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"21 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ensemble and cost-sensitive learning-based root cause diagnosis scheme for wireless networks with spatially imbalanced user data distribution\",\"authors\":\"Qi Wang, Zhiwen Pan, Nan Liu\",\"doi\":\"10.1007/s11432-023-4055-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A novel feature extraction method that can tolerate imbalanced user data is proposed. A cost-sensitive SVM assigns different misclassification costs to faults with different severity levels to optimize the cause diagnosis process. The simulation results demonstrate the effectiveness and superiority of the proposed algorithm.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-4055-1\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4055-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种可容忍不平衡用户数据的新型特征提取方法。对成本敏感的 SVM 为不同严重程度的故障分配不同的误分类成本,以优化故障诊断过程。仿真结果证明了所提算法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ensemble and cost-sensitive learning-based root cause diagnosis scheme for wireless networks with spatially imbalanced user data distribution

A novel feature extraction method that can tolerate imbalanced user data is proposed. A cost-sensitive SVM assigns different misclassification costs to faults with different severity levels to optimize the cause diagnosis process. The simulation results demonstrate the effectiveness and superiority of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信