通过神经进化增强自适应 5G 及以上网络支持的可解释联合学习

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bin Cao, Jianwei Zhao, Xin Liu, Yun Li
{"title":"通过神经进化增强自适应 5G 及以上网络支持的可解释联合学习","authors":"Bin Cao, Jianwei Zhao, Xin Liu, Yun Li","doi":"10.1007/s11432-023-4011-4","DOIUrl":null,"url":null,"abstract":"<p>Mobile telemedicine systems based on the next-generation communication will significantly enhance deep fusion of network automation and federated learning (FL), but data privacy is a paramount issue in sectors like healthcare. This work hence considers FL augments 5G-and-beyond networks by training deep learning (DL) models without the need to exchange raw data. The substantial communication loads imposed on by extensive parameters involved in DL models are managed through adaptive scheduling mechanisms effectively. To address the opaque nature of DL models and to improve the interpretability of FL models, we introduce a convolutional fuzzy rough neural network specifically designed for medical image processing. We also develop a multiobjective memetic evolutionary algorithm to streamline and optimize the neural network architectures. Our comprehensive FL framework integrates smart scheduling, interpretable fuzzy rough logic, and neuroevolution. This framework is shown to improve communication efficiency, increase interpretability of diagnosis with protected privacy, and generate low-complexity neural architectures.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive 5G-and-beyond network-enabled interpretable federated learning enhanced by neuroevolution\",\"authors\":\"Bin Cao, Jianwei Zhao, Xin Liu, Yun Li\",\"doi\":\"10.1007/s11432-023-4011-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mobile telemedicine systems based on the next-generation communication will significantly enhance deep fusion of network automation and federated learning (FL), but data privacy is a paramount issue in sectors like healthcare. This work hence considers FL augments 5G-and-beyond networks by training deep learning (DL) models without the need to exchange raw data. The substantial communication loads imposed on by extensive parameters involved in DL models are managed through adaptive scheduling mechanisms effectively. To address the opaque nature of DL models and to improve the interpretability of FL models, we introduce a convolutional fuzzy rough neural network specifically designed for medical image processing. We also develop a multiobjective memetic evolutionary algorithm to streamline and optimize the neural network architectures. Our comprehensive FL framework integrates smart scheduling, interpretable fuzzy rough logic, and neuroevolution. This framework is shown to improve communication efficiency, increase interpretability of diagnosis with protected privacy, and generate low-complexity neural architectures.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-4011-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4011-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于下一代通信的移动远程医疗系统将大大增强网络自动化和联合学习(FL)的深度融合,但数据隐私是医疗保健等行业的首要问题。因此,这项工作考虑通过训练深度学习(DL)模型来增强 5G 及以后的网络,而无需交换原始数据。通过自适应调度机制有效管理 DL 模型中涉及的大量参数所带来的大量通信负载。为了解决 DL 模型的不透明性并提高 FL 模型的可解释性,我们引入了一种专为医学图像处理设计的卷积模糊粗糙神经网络。我们还开发了一种多目标记忆进化算法来简化和优化神经网络架构。我们的综合 FL 框架集成了智能调度、可解释模糊粗糙逻辑和神经进化。结果表明,该框架能提高通信效率,在保护隐私的前提下提高诊断的可解释性,并生成低复杂度的神经架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive 5G-and-beyond network-enabled interpretable federated learning enhanced by neuroevolution

Mobile telemedicine systems based on the next-generation communication will significantly enhance deep fusion of network automation and federated learning (FL), but data privacy is a paramount issue in sectors like healthcare. This work hence considers FL augments 5G-and-beyond networks by training deep learning (DL) models without the need to exchange raw data. The substantial communication loads imposed on by extensive parameters involved in DL models are managed through adaptive scheduling mechanisms effectively. To address the opaque nature of DL models and to improve the interpretability of FL models, we introduce a convolutional fuzzy rough neural network specifically designed for medical image processing. We also develop a multiobjective memetic evolutionary algorithm to streamline and optimize the neural network architectures. Our comprehensive FL framework integrates smart scheduling, interpretable fuzzy rough logic, and neuroevolution. This framework is shown to improve communication efficiency, increase interpretability of diagnosis with protected privacy, and generate low-complexity neural architectures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信