{"title":"在动物种群采样中应用顺序适应策略:实证研究","authors":"Rosa M. Di Biase, Fulvia Mecatti","doi":"10.1002/env.2870","DOIUrl":null,"url":null,"abstract":"Traditional sampling methods may prove inadequate when dealing with spatially clustered populations or when studying rare events or traits that are not easily detectable across the target population. When both scenarios occur simultaneously, adaptive sampling strategies can represent a viable option to enhance the detectability of cases of interest. This paper delves into the application of a novel class of sequential adaptive sampling strategies to animal surveys. These strategies, originally proposed for human population tuberculosis prevalence surveys, allow oversampling of the rare interest variables while managing on‐field constraints. This ensures that the unfixed sample size, typical of adaptive sampling, does not compromise overall cost‐effectiveness. We explore a strategy within this class that integrates an adaptive component into a Poisson sequential selection. The aim is twofold: to intensify the detection of cases by exploiting the spatial clustering and to provide a flexible framework for managing logistics and budget constraints. To illustrate the strengths and weaknesses of this Poisson‐based sequential adaptive sampling strategy compared to traditional sampling methods, a simulation study was conducted on a blue‐winged teal population in Florida, USA. The results showcase the benefits of the proposed strategy and open avenues for future methodological and practical improvements.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying sequential adaptive strategies for sampling animal populations: An empirical study\",\"authors\":\"Rosa M. Di Biase, Fulvia Mecatti\",\"doi\":\"10.1002/env.2870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional sampling methods may prove inadequate when dealing with spatially clustered populations or when studying rare events or traits that are not easily detectable across the target population. When both scenarios occur simultaneously, adaptive sampling strategies can represent a viable option to enhance the detectability of cases of interest. This paper delves into the application of a novel class of sequential adaptive sampling strategies to animal surveys. These strategies, originally proposed for human population tuberculosis prevalence surveys, allow oversampling of the rare interest variables while managing on‐field constraints. This ensures that the unfixed sample size, typical of adaptive sampling, does not compromise overall cost‐effectiveness. We explore a strategy within this class that integrates an adaptive component into a Poisson sequential selection. The aim is twofold: to intensify the detection of cases by exploiting the spatial clustering and to provide a flexible framework for managing logistics and budget constraints. To illustrate the strengths and weaknesses of this Poisson‐based sequential adaptive sampling strategy compared to traditional sampling methods, a simulation study was conducted on a blue‐winged teal population in Florida, USA. The results showcase the benefits of the proposed strategy and open avenues for future methodological and practical improvements.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/env.2870\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/env.2870","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Applying sequential adaptive strategies for sampling animal populations: An empirical study
Traditional sampling methods may prove inadequate when dealing with spatially clustered populations or when studying rare events or traits that are not easily detectable across the target population. When both scenarios occur simultaneously, adaptive sampling strategies can represent a viable option to enhance the detectability of cases of interest. This paper delves into the application of a novel class of sequential adaptive sampling strategies to animal surveys. These strategies, originally proposed for human population tuberculosis prevalence surveys, allow oversampling of the rare interest variables while managing on‐field constraints. This ensures that the unfixed sample size, typical of adaptive sampling, does not compromise overall cost‐effectiveness. We explore a strategy within this class that integrates an adaptive component into a Poisson sequential selection. The aim is twofold: to intensify the detection of cases by exploiting the spatial clustering and to provide a flexible framework for managing logistics and budget constraints. To illustrate the strengths and weaknesses of this Poisson‐based sequential adaptive sampling strategy compared to traditional sampling methods, a simulation study was conducted on a blue‐winged teal population in Florida, USA. The results showcase the benefits of the proposed strategy and open avenues for future methodological and practical improvements.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.