Kseniia Vasileva, Victoria Ershova, Oleg Vereshchagin, Aleksandr Vilesov, Petr Fedorov
{"title":"硅质岩-碳酸盐岩混合岩的氯化作用:俄罗斯吉丹半岛的案例研究","authors":"Kseniia Vasileva, Victoria Ershova, Oleg Vereshchagin, Aleksandr Vilesov, Petr Fedorov","doi":"10.1007/s13146-024-00985-y","DOIUrl":null,"url":null,"abstract":"<p>The chlorite group of minerals (chlorites) are well-known phyllosilicates, which have been described from magmatic, metamorphic and sedimentary rocks. Chlorites often appear in the cement of sandstones and can affect their reservoir properties. Here, we present the results of a study on the distribution and composition of chloritized mixed siliciclastic-carbonate rocks from the Middle Ordovician of the Gydan Peninsula, northern Siberia, Russia. This study is based on the first deep well in the area to penetrate the entire 4500-meter-thick sedimentary succession. A number of different carbonate rock textures are found in this area, including rudstone-floatstone (composed almost entirely of calcite), wackestone and packstone (composed of calcite bioclasts and clayey micrite matrix), marl (containing calcite bioclasts, dolomite / ankerite, illite / muscovite, quartz, feldspar and chlorites), and dolomitic marl (composed of illite / muscovite and dolomite / ankerite). Chlorite is represented by chamosite and contains up to 33.5 wt% FeO and up to 0.7 wt% TiO<sub>2</sub>. Chlorite content positively correlates with illite / muscovite content, reaching a maximum in marls and dolomitic marls (up to 13 vol%). Chlorite crystals are micron-sized and appear as authigenic grains, where they can be distributed in the matrix or form secondary rims around calcite bioclasts and dolomite / ankerite grains. The two main processes leading to chloritization in the studied rocks include illite / muscovite replacement by chlorite and a reaction between illite / muscovite and dolomite / ankerite resulted in chlorite crystallization. Paleotemperatures during chlorite crystallization reached as high as 295–318 °C. Chloritization of the studied carbonate rocks resulted in a porosity reduction, as chlorite rims filled micropores at the contacts with the siliciclastic matrix.</p>","PeriodicalId":9612,"journal":{"name":"Carbonates and Evaporites","volume":"29 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chloritization of mixed siliciclastic-carbonate rocks: case study from Gydan Peninsula, Russia\",\"authors\":\"Kseniia Vasileva, Victoria Ershova, Oleg Vereshchagin, Aleksandr Vilesov, Petr Fedorov\",\"doi\":\"10.1007/s13146-024-00985-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The chlorite group of minerals (chlorites) are well-known phyllosilicates, which have been described from magmatic, metamorphic and sedimentary rocks. Chlorites often appear in the cement of sandstones and can affect their reservoir properties. Here, we present the results of a study on the distribution and composition of chloritized mixed siliciclastic-carbonate rocks from the Middle Ordovician of the Gydan Peninsula, northern Siberia, Russia. This study is based on the first deep well in the area to penetrate the entire 4500-meter-thick sedimentary succession. A number of different carbonate rock textures are found in this area, including rudstone-floatstone (composed almost entirely of calcite), wackestone and packstone (composed of calcite bioclasts and clayey micrite matrix), marl (containing calcite bioclasts, dolomite / ankerite, illite / muscovite, quartz, feldspar and chlorites), and dolomitic marl (composed of illite / muscovite and dolomite / ankerite). Chlorite is represented by chamosite and contains up to 33.5 wt% FeO and up to 0.7 wt% TiO<sub>2</sub>. Chlorite content positively correlates with illite / muscovite content, reaching a maximum in marls and dolomitic marls (up to 13 vol%). Chlorite crystals are micron-sized and appear as authigenic grains, where they can be distributed in the matrix or form secondary rims around calcite bioclasts and dolomite / ankerite grains. The two main processes leading to chloritization in the studied rocks include illite / muscovite replacement by chlorite and a reaction between illite / muscovite and dolomite / ankerite resulted in chlorite crystallization. Paleotemperatures during chlorite crystallization reached as high as 295–318 °C. Chloritization of the studied carbonate rocks resulted in a porosity reduction, as chlorite rims filled micropores at the contacts with the siliciclastic matrix.</p>\",\"PeriodicalId\":9612,\"journal\":{\"name\":\"Carbonates and Evaporites\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbonates and Evaporites\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13146-024-00985-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbonates and Evaporites","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13146-024-00985-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Chloritization of mixed siliciclastic-carbonate rocks: case study from Gydan Peninsula, Russia
The chlorite group of minerals (chlorites) are well-known phyllosilicates, which have been described from magmatic, metamorphic and sedimentary rocks. Chlorites often appear in the cement of sandstones and can affect their reservoir properties. Here, we present the results of a study on the distribution and composition of chloritized mixed siliciclastic-carbonate rocks from the Middle Ordovician of the Gydan Peninsula, northern Siberia, Russia. This study is based on the first deep well in the area to penetrate the entire 4500-meter-thick sedimentary succession. A number of different carbonate rock textures are found in this area, including rudstone-floatstone (composed almost entirely of calcite), wackestone and packstone (composed of calcite bioclasts and clayey micrite matrix), marl (containing calcite bioclasts, dolomite / ankerite, illite / muscovite, quartz, feldspar and chlorites), and dolomitic marl (composed of illite / muscovite and dolomite / ankerite). Chlorite is represented by chamosite and contains up to 33.5 wt% FeO and up to 0.7 wt% TiO2. Chlorite content positively correlates with illite / muscovite content, reaching a maximum in marls and dolomitic marls (up to 13 vol%). Chlorite crystals are micron-sized and appear as authigenic grains, where they can be distributed in the matrix or form secondary rims around calcite bioclasts and dolomite / ankerite grains. The two main processes leading to chloritization in the studied rocks include illite / muscovite replacement by chlorite and a reaction between illite / muscovite and dolomite / ankerite resulted in chlorite crystallization. Paleotemperatures during chlorite crystallization reached as high as 295–318 °C. Chloritization of the studied carbonate rocks resulted in a porosity reduction, as chlorite rims filled micropores at the contacts with the siliciclastic matrix.
期刊介绍:
Established in 1979, the international journal Carbonates and Evaporites provides a forum for the exchange of concepts, research and applications on all aspects of carbonate and evaporite geology. This includes the origin and stratigraphy of carbonate and evaporite rocks and issues unique to these rock types: weathering phenomena, notably karst; engineering and environmental issues; mining and minerals extraction; and caves and permeability.
The journal publishes current information in the form of original peer-reviewed articles, invited papers, and reports from meetings, editorials, and book and software reviews. The target audience includes professional geologists, hydrogeologists, engineers, geochemists, and other researchers, libraries, and educational centers.