论嵌入单元 3 球的零属自由边界极小曲面的面积

Peter McGrath, Jiahua Zou
{"title":"论嵌入单元 3 球的零属自由边界极小曲面的面积","authors":"Peter McGrath, Jiahua Zou","doi":"10.1007/s12220-024-01726-2","DOIUrl":null,"url":null,"abstract":"<p>We prove that the area of each nonflat genus zero free boundary minimal surface embedded in the unit 3-ball is less than the area of its radial projection to <span>\\({\\mathbb {S}}^2\\)</span>. The inequality is asymptotically sharp, and we prove any sequence of surfaces saturating it converges weakly to <span>\\({\\mathbb {S}}^2\\)</span>, as currents and as varifolds.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"353 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Areas of Genus Zero Free Boundary Minimal Surfaces Embedded in the Unit 3-Ball\",\"authors\":\"Peter McGrath, Jiahua Zou\",\"doi\":\"10.1007/s12220-024-01726-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the area of each nonflat genus zero free boundary minimal surface embedded in the unit 3-ball is less than the area of its radial projection to <span>\\\\({\\\\mathbb {S}}^2\\\\)</span>. The inequality is asymptotically sharp, and we prove any sequence of surfaces saturating it converges weakly to <span>\\\\({\\\\mathbb {S}}^2\\\\)</span>, as currents and as varifolds.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"353 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01726-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01726-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了嵌入单位 3 球的每个非平面零属自由边界极小曲面的面积小于其径向投影到 \({\mathbb {S}}^2\) 的面积。这个不等式在渐近上是尖锐的,我们证明了任何饱和它的曲面序列都会弱收敛于\({\mathbb {S}}^2\), 作为电流和变分曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Areas of Genus Zero Free Boundary Minimal Surfaces Embedded in the Unit 3-Ball

We prove that the area of each nonflat genus zero free boundary minimal surface embedded in the unit 3-ball is less than the area of its radial projection to \({\mathbb {S}}^2\). The inequality is asymptotically sharp, and we prove any sequence of surfaces saturating it converges weakly to \({\mathbb {S}}^2\), as currents and as varifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信