来自费弗曼空间的谐波变形

Sorin Dragomir, Francesco Esposito, Eric Loubeau
{"title":"来自费弗曼空间的谐波变形","authors":"Sorin Dragomir, Francesco Esposito, Eric Loubeau","doi":"10.1007/s12220-024-01731-5","DOIUrl":null,"url":null,"abstract":"<p>We study a ramification of a phenomenon discovered by Baird and Eells (in: Looijenga et al (eds) Geometry Symposium Utrecht 1980. Lecture Notes in Mathematics, Springer, Berlin, 1981) i.e. that non-constant harmonic morphisms <span>\\(\\Phi : {{\\mathfrak {M}}}^{\\textrm{N}} \\rightarrow N^2\\)</span> from a <span>\\(\\mathrm N\\)</span>-dimensional (<span>\\(\\textrm{N} \\ge 3\\)</span>) Riemannian manifold <span>\\({{\\mathfrak {M}}}^{\\textrm{N}}\\)</span>, into a Riemann surface <span>\\(N^2\\)</span>, can be characterized as those horizontally weakly conformal maps having minimal fibres. We recover Baird–Eells’ result for <span>\\(S^1\\)</span> invariant harmonic morphisms <span>\\(\\Phi : {{\\mathfrak {M}}}^{2n+2} \\rightarrow N^2\\)</span> from a class of Lorentzian manifolds arising as total spaces <span>\\({{\\mathfrak {M}}} = C(M)\\)</span> of canonical circle bundles <span>\\(S^1 \\rightarrow {{\\mathfrak {M}}} \\rightarrow M\\)</span> over strictly pseudoconvex CR manifolds <span>\\(M^{2n+1}\\)</span>. The corresponding base maps <span>\\(\\phi : M^{2n+1} \\rightarrow N^2\\)</span> are shown to satisfy <span>\\(\\lim _{\\epsilon \\rightarrow 0^+} \\, \\pi _{{{\\mathscr {H}}}^\\phi } \\, \\mu ^{{{\\mathscr {V}}}^\\phi }_\\epsilon = 0\\)</span>, where <span>\\(\\mu ^{{{\\mathscr {V}}}^\\phi }_\\epsilon \\)</span> is the mean curvature vector of the vertical distribution <span>\\({{\\mathscr {V}}}^\\phi = \\textrm{Ker} (d \\phi )\\)</span> on the Riemannian manifold <span>\\((M, \\, g_\\epsilon )\\)</span>, and <span>\\(\\{ g_\\epsilon \\}_{0&lt; \\epsilon &lt; 1}\\)</span> is a family of contractions of the Levi form of the pseudohermitian manifold <span>\\((M, \\, \\theta )\\)</span>.\n</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Morphisms from Fefferman Spaces\",\"authors\":\"Sorin Dragomir, Francesco Esposito, Eric Loubeau\",\"doi\":\"10.1007/s12220-024-01731-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a ramification of a phenomenon discovered by Baird and Eells (in: Looijenga et al (eds) Geometry Symposium Utrecht 1980. Lecture Notes in Mathematics, Springer, Berlin, 1981) i.e. that non-constant harmonic morphisms <span>\\\\(\\\\Phi : {{\\\\mathfrak {M}}}^{\\\\textrm{N}} \\\\rightarrow N^2\\\\)</span> from a <span>\\\\(\\\\mathrm N\\\\)</span>-dimensional (<span>\\\\(\\\\textrm{N} \\\\ge 3\\\\)</span>) Riemannian manifold <span>\\\\({{\\\\mathfrak {M}}}^{\\\\textrm{N}}\\\\)</span>, into a Riemann surface <span>\\\\(N^2\\\\)</span>, can be characterized as those horizontally weakly conformal maps having minimal fibres. We recover Baird–Eells’ result for <span>\\\\(S^1\\\\)</span> invariant harmonic morphisms <span>\\\\(\\\\Phi : {{\\\\mathfrak {M}}}^{2n+2} \\\\rightarrow N^2\\\\)</span> from a class of Lorentzian manifolds arising as total spaces <span>\\\\({{\\\\mathfrak {M}}} = C(M)\\\\)</span> of canonical circle bundles <span>\\\\(S^1 \\\\rightarrow {{\\\\mathfrak {M}}} \\\\rightarrow M\\\\)</span> over strictly pseudoconvex CR manifolds <span>\\\\(M^{2n+1}\\\\)</span>. The corresponding base maps <span>\\\\(\\\\phi : M^{2n+1} \\\\rightarrow N^2\\\\)</span> are shown to satisfy <span>\\\\(\\\\lim _{\\\\epsilon \\\\rightarrow 0^+} \\\\, \\\\pi _{{{\\\\mathscr {H}}}^\\\\phi } \\\\, \\\\mu ^{{{\\\\mathscr {V}}}^\\\\phi }_\\\\epsilon = 0\\\\)</span>, where <span>\\\\(\\\\mu ^{{{\\\\mathscr {V}}}^\\\\phi }_\\\\epsilon \\\\)</span> is the mean curvature vector of the vertical distribution <span>\\\\({{\\\\mathscr {V}}}^\\\\phi = \\\\textrm{Ker} (d \\\\phi )\\\\)</span> on the Riemannian manifold <span>\\\\((M, \\\\, g_\\\\epsilon )\\\\)</span>, and <span>\\\\(\\\\{ g_\\\\epsilon \\\\}_{0&lt; \\\\epsilon &lt; 1}\\\\)</span> is a family of contractions of the Levi form of the pseudohermitian manifold <span>\\\\((M, \\\\, \\\\theta )\\\\)</span>.\\n</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01731-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01731-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了贝尔德和埃尔斯发现的一种现象的分支(见 Looijenga et al (eds) Geometry Symposium Utrecht 1980:Looijenga et al (eds) Geometry Symposium Utrecht 1980.Lecture Notes in Mathematics, Springer, Berlin, 1981),即从一个 \(\mathrm N\)-dimensional (\(\textrm{N} \ge 3\)) 的非恒定调和形态 \(\Phi : {{\mathfrak {M}}}^{textrm{N}} \rightarrow N^2\)从黎曼流形({{mathfrak {M}}}^{textrm{N}} )到黎曼曲面(N^2),可以被描述为那些具有最小纤维的水平弱保角映射。我们恢复了贝尔德-埃尔斯关于 \(S^1\) 不变谐调形态 \(\Phi :{从一类洛伦兹流形作为严格伪凸CR流形(M^{2n+1}\)上的佳能圆束(S^1 \rightarrow {\mathfrak {M}}} \rightarrow M)的总空间({\mathfrak {M}}} = C(M)\)产生。相应的基映射 \(\phi : M^{2n+1} \rightarrow N^2\) 被证明满足 \(\lim _{\epsilon \rightarrow 0^+} \, \pi _{{\mathscr {H}}}}^\phi }.\mu ^{{\mathscr {V}}^\phi }_\epsilon = 0\)、其中 \(\mu ^{{{{mathscr {V}}}^\phi }_\epsilon \)是黎曼流形 \((M.,g_epsilon))上垂直分布 \({{{mathscr {V}}}^\phi = \textrm{Ker} (d \phi )\)的平均曲率向量、\和({ g_epsilon \}_{0<;\epsilon<1})是伪赫米特流形 \((M, \, \theta ))的列维形式的收缩族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic Morphisms from Fefferman Spaces

We study a ramification of a phenomenon discovered by Baird and Eells (in: Looijenga et al (eds) Geometry Symposium Utrecht 1980. Lecture Notes in Mathematics, Springer, Berlin, 1981) i.e. that non-constant harmonic morphisms \(\Phi : {{\mathfrak {M}}}^{\textrm{N}} \rightarrow N^2\) from a \(\mathrm N\)-dimensional (\(\textrm{N} \ge 3\)) Riemannian manifold \({{\mathfrak {M}}}^{\textrm{N}}\), into a Riemann surface \(N^2\), can be characterized as those horizontally weakly conformal maps having minimal fibres. We recover Baird–Eells’ result for \(S^1\) invariant harmonic morphisms \(\Phi : {{\mathfrak {M}}}^{2n+2} \rightarrow N^2\) from a class of Lorentzian manifolds arising as total spaces \({{\mathfrak {M}}} = C(M)\) of canonical circle bundles \(S^1 \rightarrow {{\mathfrak {M}}} \rightarrow M\) over strictly pseudoconvex CR manifolds \(M^{2n+1}\). The corresponding base maps \(\phi : M^{2n+1} \rightarrow N^2\) are shown to satisfy \(\lim _{\epsilon \rightarrow 0^+} \, \pi _{{{\mathscr {H}}}^\phi } \, \mu ^{{{\mathscr {V}}}^\phi }_\epsilon = 0\), where \(\mu ^{{{\mathscr {V}}}^\phi }_\epsilon \) is the mean curvature vector of the vertical distribution \({{\mathscr {V}}}^\phi = \textrm{Ker} (d \phi )\) on the Riemannian manifold \((M, \, g_\epsilon )\), and \(\{ g_\epsilon \}_{0< \epsilon < 1}\) is a family of contractions of the Levi form of the pseudohermitian manifold \((M, \, \theta )\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信