渐近局部复杂双曲近乎赫米蒂积分积分(CR Compactification for Asymptotically Locally Complex Hyperbolic Almost Hermitian Manifolds

Alan Pinoy
{"title":"渐近局部复杂双曲近乎赫米蒂积分积分(CR Compactification for Asymptotically Locally Complex Hyperbolic Almost Hermitian Manifolds","authors":"Alan Pinoy","doi":"10.1007/s12220-024-01677-8","DOIUrl":null,"url":null,"abstract":"<p>In this article, we consider a complete, non-compact almost Hermitian manifold whose curvature is asymptotic to that of the complex hyperbolic space. Under natural geometric conditions, we show that such a manifold arises as the interior of a compact almost complex manifold whose boundary is a strictly pseudoconvex CR manifold. Moreover, the geometric structure of the boundary can be recovered by analysing the expansion of the metric near infinity.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CR Compactification for Asymptotically Locally Complex Hyperbolic Almost Hermitian Manifolds\",\"authors\":\"Alan Pinoy\",\"doi\":\"10.1007/s12220-024-01677-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we consider a complete, non-compact almost Hermitian manifold whose curvature is asymptotic to that of the complex hyperbolic space. Under natural geometric conditions, we show that such a manifold arises as the interior of a compact almost complex manifold whose boundary is a strictly pseudoconvex CR manifold. Moreover, the geometric structure of the boundary can be recovered by analysing the expansion of the metric near infinity.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01677-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01677-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们考虑了一个完整的、非紧凑的几乎赫米梯形流形,它的曲率近似于复双曲空间的曲率。在自然几何条件下,我们证明这样的流形产生于一个紧凑的近乎复流形的内部,其边界是一个严格的伪凸 CR 流形。此外,边界的几何结构可以通过分析无穷附近的度量膨胀来恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CR Compactification for Asymptotically Locally Complex Hyperbolic Almost Hermitian Manifolds

In this article, we consider a complete, non-compact almost Hermitian manifold whose curvature is asymptotic to that of the complex hyperbolic space. Under natural geometric conditions, we show that such a manifold arises as the interior of a compact almost complex manifold whose boundary is a strictly pseudoconvex CR manifold. Moreover, the geometric structure of the boundary can be recovered by analysing the expansion of the metric near infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信