恒曲率球面对称投影芬斯勒度量的整体性

Mezrag Asma, Muzsnay Zoltan
{"title":"恒曲率球面对称投影芬斯勒度量的整体性","authors":"Mezrag Asma, Muzsnay Zoltan","doi":"10.1007/s12220-024-01691-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the holonomy group of <i>n</i>-dimensional projective Finsler metrics of constant curvature. We establish that in the spherically symmetric case, the holonomy group is maximal, and for a simply connected manifold it is isomorphic to <span>\\({\\mathcal {D}}i\\!f \\hspace{-3pt} f_o({\\mathbb {S}}^{n-1})\\)</span>, the connected component of the identity of the group of smooth diffeomorphism on the <span>\\({n-1}\\)</span>-dimensional sphere. In particular, the holonomy group of the <i>n</i>-dimensional standard Funk metric and the Bryant–Shen metrics are maximal and isomorphic to <span>\\({\\mathcal {D}}i\\!f \\hspace{-3pt} f_o({\\mathbb {S}}^{n-1})\\)</span>. These results are the firsts describing explicitly the holonomy group of <i>n</i>-dimensional Finsler manifolds in the non-Berwaldian (that is when the canonical connection is non-linear) case.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Holonomy of Spherically Symmetric Projective Finsler Metrics of Constant Curvature\",\"authors\":\"Mezrag Asma, Muzsnay Zoltan\",\"doi\":\"10.1007/s12220-024-01691-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the holonomy group of <i>n</i>-dimensional projective Finsler metrics of constant curvature. We establish that in the spherically symmetric case, the holonomy group is maximal, and for a simply connected manifold it is isomorphic to <span>\\\\({\\\\mathcal {D}}i\\\\!f \\\\hspace{-3pt} f_o({\\\\mathbb {S}}^{n-1})\\\\)</span>, the connected component of the identity of the group of smooth diffeomorphism on the <span>\\\\({n-1}\\\\)</span>-dimensional sphere. In particular, the holonomy group of the <i>n</i>-dimensional standard Funk metric and the Bryant–Shen metrics are maximal and isomorphic to <span>\\\\({\\\\mathcal {D}}i\\\\!f \\\\hspace{-3pt} f_o({\\\\mathbb {S}}^{n-1})\\\\)</span>. These results are the firsts describing explicitly the holonomy group of <i>n</i>-dimensional Finsler manifolds in the non-Berwaldian (that is when the canonical connection is non-linear) case.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01691-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01691-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了 n 维恒定曲率投影 Finsler 度量的全局群。我们发现,在球对称情况下,全局群是最大的,对于简单相连的流形,它与\({\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}^{n-1})\) 同构,后者是\({n-1}\)维球面上光滑差分群的连通分量。特别是,n 维标准 Funk 度量和 Bryant-Shen 度量的全局群是最大的,并且与 \({\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}^{n-1})\) 同构。这些结果首次明确描述了n维芬斯勒流形在非伯瓦尔迪(即当规范连接为非线性时)情况下的全局群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Holonomy of Spherically Symmetric Projective Finsler Metrics of Constant Curvature

In this paper, we investigate the holonomy group of n-dimensional projective Finsler metrics of constant curvature. We establish that in the spherically symmetric case, the holonomy group is maximal, and for a simply connected manifold it is isomorphic to \({\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}^{n-1})\), the connected component of the identity of the group of smooth diffeomorphism on the \({n-1}\)-dimensional sphere. In particular, the holonomy group of the n-dimensional standard Funk metric and the Bryant–Shen metrics are maximal and isomorphic to \({\mathcal {D}}i\!f \hspace{-3pt} f_o({\mathbb {S}}^{n-1})\). These results are the firsts describing explicitly the holonomy group of n-dimensional Finsler manifolds in the non-Berwaldian (that is when the canonical connection is non-linear) case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信