三维理想不可压缩流体能量守恒的速度-涡度几何约束条件

Luigi C. Berselli, Rossano Sannipoli
{"title":"三维理想不可压缩流体能量守恒的速度-涡度几何约束条件","authors":"Luigi C. Berselli, Rossano Sannipoli","doi":"10.1007/s12220-024-01704-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity-Vorticity Geometric Constraints for the Energy Conservation of 3D Ideal Incompressible Fluids\",\"authors\":\"Luigi C. Berselli, Rossano Sannipoli\",\"doi\":\"10.1007/s12220-024-01704-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01704-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01704-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了三维欧拉方程,并首先证明了弱解的能量守恒准则,其中速度满足关于空间变量的分数索波列夫空间中的附加假设,并平衡了关于时间的适当可整性。接下来,我们将该准则用于研究贝特拉米类型解的能量守恒,仔细应用(分数和可能负的)索博廖夫空间中的乘积属性,并采用适当的自举论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Velocity-Vorticity Geometric Constraints for the Energy Conservation of 3D Ideal Incompressible Fluids

In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信