{"title":"三维理想不可压缩流体能量守恒的速度-涡度几何约束条件","authors":"Luigi C. Berselli, Rossano Sannipoli","doi":"10.1007/s12220-024-01704-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity-Vorticity Geometric Constraints for the Energy Conservation of 3D Ideal Incompressible Fluids\",\"authors\":\"Luigi C. Berselli, Rossano Sannipoli\",\"doi\":\"10.1007/s12220-024-01704-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01704-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01704-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Velocity-Vorticity Geometric Constraints for the Energy Conservation of 3D Ideal Incompressible Fluids
In this paper we consider the 3D Euler equations and we first prove a criterion for energy conservation for weak solutions, where the velocity satisfies additional assumptions in fractional Sobolev spaces with respect to the space variables, balanced by proper integrability with respect to time. Next, we apply the criterion to study the energy conservation of solution of the Beltrami type, carefully applying properties of products in (fractional and possibly negative) Sobolev spaces and employing a suitable bootstrap argument.