{"title":"凹函数类的几何表示和对偶性","authors":"Grigory Ivanov, Elisabeth M. Werner","doi":"10.1007/s12220-024-01703-9","DOIUrl":null,"url":null,"abstract":"<p>Using a natural representation of a 1/<i>s</i>-concave function on <span>\\({\\mathbb {R}}^d\\)</span> as a convex set in <span>\\({\\mathbb {R}}^{d+1},\\)</span> we derive a simple formula for the integral of its <i>s</i>-polar. This leads to convexity properties of the integral of the <i>s</i>-polar function with respect to the center of polarity. In particular, we prove that the reciprocal of the integral of the polar function of a log-concave function is log-concave as a function of the center of polarity. Also, we define the Santaló regions for <i>s</i>-concave and log-concave functions and generalize the Santaló inequality for them in the case the origin is not the Santaló point.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Representation of Classes of Concave Functions and Duality\",\"authors\":\"Grigory Ivanov, Elisabeth M. Werner\",\"doi\":\"10.1007/s12220-024-01703-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using a natural representation of a 1/<i>s</i>-concave function on <span>\\\\({\\\\mathbb {R}}^d\\\\)</span> as a convex set in <span>\\\\({\\\\mathbb {R}}^{d+1},\\\\)</span> we derive a simple formula for the integral of its <i>s</i>-polar. This leads to convexity properties of the integral of the <i>s</i>-polar function with respect to the center of polarity. In particular, we prove that the reciprocal of the integral of the polar function of a log-concave function is log-concave as a function of the center of polarity. Also, we define the Santaló regions for <i>s</i>-concave and log-concave functions and generalize the Santaló inequality for them in the case the origin is not the Santaló point.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01703-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01703-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric Representation of Classes of Concave Functions and Duality
Using a natural representation of a 1/s-concave function on \({\mathbb {R}}^d\) as a convex set in \({\mathbb {R}}^{d+1},\) we derive a simple formula for the integral of its s-polar. This leads to convexity properties of the integral of the s-polar function with respect to the center of polarity. In particular, we prove that the reciprocal of the integral of the polar function of a log-concave function is log-concave as a function of the center of polarity. Also, we define the Santaló regions for s-concave and log-concave functions and generalize the Santaló inequality for them in the case the origin is not the Santaló point.