平均曲率流的普恩卡雷不等式和平移器与自扩展器的拓扑刚度

Debora Impera, Michele Rimoldi
{"title":"平均曲率流的普恩卡雷不等式和平移器与自扩展器的拓扑刚度","authors":"Debora Impera, Michele Rimoldi","doi":"10.1007/s12220-024-01711-9","DOIUrl":null,"url":null,"abstract":"<p>We prove an abstract structure theorem for weighted manifolds supporting a weighted <i>f</i>-Poincaré inequality and whose ends satisfy a suitable non-integrability condition. We then study how our arguments can be used to obtain full topological control on two important classes of hypersurfaces of the Euclidean space, namely translators and self-expanders for the mean curvature flow, under either stability or curvature asumptions. As an important intermediate step in order to get our results we get the validity of a Poincaré inequality with respect to the natural weighted measure on any translator and we prove that any end of a translator must have infinite weighted volume. Similar tools can be obtained for properly immersed self-expanders permitting to get topological rigidity under curvature assumptions.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poincaré Inequality and Topological Rigidity of Translators and Self-Expanders for the Mean Curvature Flow\",\"authors\":\"Debora Impera, Michele Rimoldi\",\"doi\":\"10.1007/s12220-024-01711-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove an abstract structure theorem for weighted manifolds supporting a weighted <i>f</i>-Poincaré inequality and whose ends satisfy a suitable non-integrability condition. We then study how our arguments can be used to obtain full topological control on two important classes of hypersurfaces of the Euclidean space, namely translators and self-expanders for the mean curvature flow, under either stability or curvature asumptions. As an important intermediate step in order to get our results we get the validity of a Poincaré inequality with respect to the natural weighted measure on any translator and we prove that any end of a translator must have infinite weighted volume. Similar tools can be obtained for properly immersed self-expanders permitting to get topological rigidity under curvature assumptions.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01711-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01711-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个支持加权 f-Poincaré 不等式的加权流形的抽象结构定理,该流形的两端满足一个合适的非integrability 条件。然后,我们将研究如何利用我们的论证,在稳定性或曲率假设条件下,获得对欧几里得空间两类重要超曲面的完全拓扑控制,即平均曲率流的平移器和自扩张器。为了得到我们的结果,作为一个重要的中间步骤,我们得到了关于任何平移器上的自然加权度量的普恩卡雷不等式的有效性,并证明了平移器的任何一端必须具有无限加权体积。类似的工具也可用于适当沉浸的自展开器,从而在曲率假设条件下获得拓扑刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poincaré Inequality and Topological Rigidity of Translators and Self-Expanders for the Mean Curvature Flow

We prove an abstract structure theorem for weighted manifolds supporting a weighted f-Poincaré inequality and whose ends satisfy a suitable non-integrability condition. We then study how our arguments can be used to obtain full topological control on two important classes of hypersurfaces of the Euclidean space, namely translators and self-expanders for the mean curvature flow, under either stability or curvature asumptions. As an important intermediate step in order to get our results we get the validity of a Poincaré inequality with respect to the natural weighted measure on any translator and we prove that any end of a translator must have infinite weighted volume. Similar tools can be obtained for properly immersed self-expanders permitting to get topological rigidity under curvature assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信