关于亚历山德罗夫沉入式均方差流的说明

Ben Lambert, Elena Mäder-Baumdicker
{"title":"关于亚历山德罗夫沉入式均方差流的说明","authors":"Ben Lambert, Elena Mäder-Baumdicker","doi":"10.1007/s12220-024-01705-7","DOIUrl":null,"url":null,"abstract":"<p>We demonstrate that the property of being Alexandrov immersed is preserved along mean curvature flow. Furthermore, we demonstrate that mean curvature flow techniques for mean convex embedded flows such as noncollapsing and gradient estimates also hold in this setting. We also indicate the necessary modifications to the work of Brendle–Huisken to allow for mean curvature flow with surgery in the Alexandrov immersed, 2-dimensional setting.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"174 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Alexandrov Immersed Mean Curvature Flow\",\"authors\":\"Ben Lambert, Elena Mäder-Baumdicker\",\"doi\":\"10.1007/s12220-024-01705-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We demonstrate that the property of being Alexandrov immersed is preserved along mean curvature flow. Furthermore, we demonstrate that mean curvature flow techniques for mean convex embedded flows such as noncollapsing and gradient estimates also hold in this setting. We also indicate the necessary modifications to the work of Brendle–Huisken to allow for mean curvature flow with surgery in the Alexandrov immersed, 2-dimensional setting.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"174 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01705-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01705-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了亚历山德罗夫沉浸特性在均值曲率流中得以保留。此外,我们还证明了均值凸嵌入流的均值曲率流技术,如非塌缩和梯度估计,在这种情况下也是成立的。我们还指出了对布伦德尔-惠斯肯工作的必要修改,以便在亚历山德罗夫沉浸的二维环境中实现带手术的均值曲率流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Note on Alexandrov Immersed Mean Curvature Flow

A Note on Alexandrov Immersed Mean Curvature Flow

We demonstrate that the property of being Alexandrov immersed is preserved along mean curvature flow. Furthermore, we demonstrate that mean curvature flow techniques for mean convex embedded flows such as noncollapsing and gradient estimates also hold in this setting. We also indicate the necessary modifications to the work of Brendle–Huisken to allow for mean curvature flow with surgery in the Alexandrov immersed, 2-dimensional setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信