斐洛最短线段问题的对偶问题

Yagub N. Aliyev
{"title":"斐洛最短线段问题的对偶问题","authors":"Yagub N. Aliyev","doi":"arxiv-2406.05702","DOIUrl":null,"url":null,"abstract":"We study the dual of Philo's shortest line segment problem which asks to find\nthe optimal line segments passing through two given points, with a common\nendpoint, and with the other endpoints on a given line. The provided solution\nuses multivariable calculus and geometry methods. Interesting connections with\nthe angle bisector of the triangle are explored.","PeriodicalId":501570,"journal":{"name":"arXiv - CS - Computational Geometry","volume":"191 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The dual of Philo's shortest line segment problem\",\"authors\":\"Yagub N. Aliyev\",\"doi\":\"arxiv-2406.05702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the dual of Philo's shortest line segment problem which asks to find\\nthe optimal line segments passing through two given points, with a common\\nendpoint, and with the other endpoints on a given line. The provided solution\\nuses multivariable calculus and geometry methods. Interesting connections with\\nthe angle bisector of the triangle are explored.\",\"PeriodicalId\":501570,\"journal\":{\"name\":\"arXiv - CS - Computational Geometry\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computational Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.05702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.05702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了菲洛最短线段问题的对偶问题,该问题要求找到经过两个给定点的最优线段,它们有一个公共端点,而另一个端点在一条给定的直线上。所提供的解决方案使用了多元微积分和几何方法。探索了三角形角平分线的有趣联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The dual of Philo's shortest line segment problem
We study the dual of Philo's shortest line segment problem which asks to find the optimal line segments passing through two given points, with a common endpoint, and with the other endpoints on a given line. The provided solution uses multivariable calculus and geometry methods. Interesting connections with the angle bisector of the triangle are explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信