利用坐标和流图深度学习提高多尺度系统的计算效率

Asif Hamid, Danish Rafiq, Shahkar Ahmad Nahvi, Mohammad Abid Bazaz
{"title":"利用坐标和流图深度学习提高多尺度系统的计算效率","authors":"Asif Hamid, Danish Rafiq, Shahkar Ahmad Nahvi, Mohammad Abid Bazaz","doi":"arxiv-2407.00011","DOIUrl":null,"url":null,"abstract":"Complex systems often show macroscopic coherent behavior due to the\ninteractions of microscopic agents like molecules, cells, or individuals in a\npopulation with their environment. However, simulating such systems poses\nseveral computational challenges during simulation as the underlying dynamics\nvary and span wide spatiotemporal scales of interest. To capture the\nfast-evolving features, finer time steps are required while ensuring that the\nsimulation time is long enough to capture the slow-scale behavior, making the\nanalyses computationally unmanageable. This paper showcases how deep learning\ntechniques can be used to develop a precise time-stepping approach for\nmultiscale systems using the joint discovery of coordinates and flow maps.\nWhile the former allows us to represent the multiscale dynamics on a\nrepresentative basis, the latter enables the iterative time-stepping estimation\nof the reduced variables. The resulting framework achieves state-of-the-art\npredictive accuracy while incurring lesser computational costs. We demonstrate\nthis ability of the proposed scheme on the large-scale Fitzhugh Nagumo neuron\nmodel and the 1D Kuramoto-Sivashinsky equation in the chaotic regime.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"216 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps\",\"authors\":\"Asif Hamid, Danish Rafiq, Shahkar Ahmad Nahvi, Mohammad Abid Bazaz\",\"doi\":\"arxiv-2407.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex systems often show macroscopic coherent behavior due to the\\ninteractions of microscopic agents like molecules, cells, or individuals in a\\npopulation with their environment. However, simulating such systems poses\\nseveral computational challenges during simulation as the underlying dynamics\\nvary and span wide spatiotemporal scales of interest. To capture the\\nfast-evolving features, finer time steps are required while ensuring that the\\nsimulation time is long enough to capture the slow-scale behavior, making the\\nanalyses computationally unmanageable. This paper showcases how deep learning\\ntechniques can be used to develop a precise time-stepping approach for\\nmultiscale systems using the joint discovery of coordinates and flow maps.\\nWhile the former allows us to represent the multiscale dynamics on a\\nrepresentative basis, the latter enables the iterative time-stepping estimation\\nof the reduced variables. The resulting framework achieves state-of-the-art\\npredictive accuracy while incurring lesser computational costs. We demonstrate\\nthis ability of the proposed scheme on the large-scale Fitzhugh Nagumo neuron\\nmodel and the 1D Kuramoto-Sivashinsky equation in the chaotic regime.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于分子、细胞或群体中的个体等微观主体与其环境的相互作用,复杂系统通常表现出宏观的一致性行为。然而,在模拟过程中,由于底层动力学会发生变化,且跨越的时空尺度较宽,因此模拟这类系统会给计算带来诸多挑战。为了捕捉快速变化的特征,需要更细的时间步长,同时确保模拟时间足够长以捕捉慢尺度行为,这使得分析计算变得难以管理。本文展示了如何利用深度学习技术,通过坐标和流图的联合发现,为多尺度系统开发精确的时间步进方法。前者允许我们在表征基础上表征多尺度动力学,后者则能对缩小的变量进行迭代时间步进估计。由此产生的框架既能达到最先进的预测精度,又能降低计算成本。我们在大规模 Fitzhugh Nagumo 神经元模型和混沌状态下的一维 Kuramoto-Sivashinsky 方程上演示了所提方案的这种能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps
Complex systems often show macroscopic coherent behavior due to the interactions of microscopic agents like molecules, cells, or individuals in a population with their environment. However, simulating such systems poses several computational challenges during simulation as the underlying dynamics vary and span wide spatiotemporal scales of interest. To capture the fast-evolving features, finer time steps are required while ensuring that the simulation time is long enough to capture the slow-scale behavior, making the analyses computationally unmanageable. This paper showcases how deep learning techniques can be used to develop a precise time-stepping approach for multiscale systems using the joint discovery of coordinates and flow maps. While the former allows us to represent the multiscale dynamics on a representative basis, the latter enables the iterative time-stepping estimation of the reduced variables. The resulting framework achieves state-of-the-art predictive accuracy while incurring lesser computational costs. We demonstrate this ability of the proposed scheme on the large-scale Fitzhugh Nagumo neuron model and the 1D Kuramoto-Sivashinsky equation in the chaotic regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信