HCT:用于高光谱图像超分辨率的混合 CNN 和变换器网络

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Huapeng Wu, Chenyun Wang, Chenyang Lu, Tianming Zhan
{"title":"HCT:用于高光谱图像超分辨率的混合 CNN 和变换器网络","authors":"Huapeng Wu, Chenyun Wang, Chenyang Lu, Tianming Zhan","doi":"10.1007/s00530-024-01387-9","DOIUrl":null,"url":null,"abstract":"<p>Recently, convolutional neural network (CNN) and transformer based on hyperspectral image super-resolution methods have achieved superior performance. Nevertheless, this is still an important problem how to effectively extract local and global features and improve spectral representation of hyperspectral image. In this paper, we propose a hybrid CNN and transformer network (HCT) for hyperspectral image super-resolution, which consists of a transformer module with local–global spatial attention mechanism (LSMSAformer) and a convolution module with 3D convolution (3DDWTC) to process high and low frequency information, respectively. Specifically, in the transformer branch, the introduced attention mechanism module (LSMSA) is used to extract local–global spatial features at different scales. In the convolution branch, 3DDWTC is proposed to learn local spatial information and preserve the spectral features, which can enhance the representation of the network. Extensive experimental results show that the proposed method can obtain better results than some state-of-the-art hyperspectral image super-resolution methods.</p>","PeriodicalId":51138,"journal":{"name":"Multimedia Systems","volume":"14 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HCT: a hybrid CNN and transformer network for hyperspectral image super-resolution\",\"authors\":\"Huapeng Wu, Chenyun Wang, Chenyang Lu, Tianming Zhan\",\"doi\":\"10.1007/s00530-024-01387-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, convolutional neural network (CNN) and transformer based on hyperspectral image super-resolution methods have achieved superior performance. Nevertheless, this is still an important problem how to effectively extract local and global features and improve spectral representation of hyperspectral image. In this paper, we propose a hybrid CNN and transformer network (HCT) for hyperspectral image super-resolution, which consists of a transformer module with local–global spatial attention mechanism (LSMSAformer) and a convolution module with 3D convolution (3DDWTC) to process high and low frequency information, respectively. Specifically, in the transformer branch, the introduced attention mechanism module (LSMSA) is used to extract local–global spatial features at different scales. In the convolution branch, 3DDWTC is proposed to learn local spatial information and preserve the spectral features, which can enhance the representation of the network. Extensive experimental results show that the proposed method can obtain better results than some state-of-the-art hyperspectral image super-resolution methods.</p>\",\"PeriodicalId\":51138,\"journal\":{\"name\":\"Multimedia Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimedia Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00530-024-01387-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01387-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

最近,基于高光谱图像超分辨率方法的卷积神经网络(CNN)和变换器取得了卓越的性能。然而,如何有效地提取局部和全局特征并改进高光谱图像的光谱表示仍然是一个重要问题。本文提出了一种用于高光谱图像超分辨率的混合 CNN 和变换器网络(HCT),它由具有局部-全局空间注意机制(LSMSAformer)的变换器模块和具有三维卷积(3DDWTC)的卷积模块组成,分别处理高频和低频信息。具体来说,在变换器分支中,引入的注意机制模块(LSMSA)用于提取不同尺度的局部-全局空间特征。在卷积分支中,提出了 3DDWTC 来学习局部空间信息并保留频谱特征,从而增强网络的代表性。广泛的实验结果表明,与一些最先进的高光谱图像超分辨率方法相比,所提出的方法能获得更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

HCT: a hybrid CNN and transformer network for hyperspectral image super-resolution

HCT: a hybrid CNN and transformer network for hyperspectral image super-resolution

Recently, convolutional neural network (CNN) and transformer based on hyperspectral image super-resolution methods have achieved superior performance. Nevertheless, this is still an important problem how to effectively extract local and global features and improve spectral representation of hyperspectral image. In this paper, we propose a hybrid CNN and transformer network (HCT) for hyperspectral image super-resolution, which consists of a transformer module with local–global spatial attention mechanism (LSMSAformer) and a convolution module with 3D convolution (3DDWTC) to process high and low frequency information, respectively. Specifically, in the transformer branch, the introduced attention mechanism module (LSMSA) is used to extract local–global spatial features at different scales. In the convolution branch, 3DDWTC is proposed to learn local spatial information and preserve the spectral features, which can enhance the representation of the network. Extensive experimental results show that the proposed method can obtain better results than some state-of-the-art hyperspectral image super-resolution methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Multimedia Systems
Multimedia Systems 工程技术-计算机:理论方法
CiteScore
5.40
自引率
7.70%
发文量
148
审稿时长
4.5 months
期刊介绍: This journal details innovative research ideas, emerging technologies, state-of-the-art methods and tools in all aspects of multimedia computing, communication, storage, and applications. It features theoretical, experimental, and survey articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信