利用遗传算法-反向传播神经网络从多源数据中完善海底地形图

IF 2.8 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Chunhong Wu, Xinwen Su, Chuang Xu, Guangyu Jian, Jinbo Li
{"title":"利用遗传算法-反向传播神经网络从多源数据中完善海底地形图","authors":"Chunhong Wu, Xinwen Su, Chuang Xu, Guangyu Jian, Jinbo Li","doi":"10.1093/gji/ggae229","DOIUrl":null,"url":null,"abstract":"Summary During the inversion of seafloor topography (ST) using the backpropagation neural network (BPNN), the random selection of parameters may decrease the accuracy. To address this issue and achieve a more efficient global search, this paper introduces a genetic algorithm-backpropagation (GA-BP) neural network. Benefiting from the global search and parallel computing capabilities of the GA, this study refines the seafloor topography of the South China Sea using multi-source gravity data. The results indicate that the GA-BP model, with a root mean square (RMS) value of 126.0 m concerning ship-measured water depths. It is noteworthy that when dealing with regions characterized by sparse survey line distributions, the GA-BP neural network stronger robustness compared to BPNN, showing less sensitivity to the distribution of survey data. Furthermore, the paper explores the influence of different data preprocessing methods on the neural network inversion of sea depths. This research introduces an optimization algorithm that reduces instability during BPNN initialization, resulting in a more accurate prediction of seafloor topography.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"188 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seafloor topography refinement from multi-source data using genetic algorithm - backpropagation neural network\",\"authors\":\"Chunhong Wu, Xinwen Su, Chuang Xu, Guangyu Jian, Jinbo Li\",\"doi\":\"10.1093/gji/ggae229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary During the inversion of seafloor topography (ST) using the backpropagation neural network (BPNN), the random selection of parameters may decrease the accuracy. To address this issue and achieve a more efficient global search, this paper introduces a genetic algorithm-backpropagation (GA-BP) neural network. Benefiting from the global search and parallel computing capabilities of the GA, this study refines the seafloor topography of the South China Sea using multi-source gravity data. The results indicate that the GA-BP model, with a root mean square (RMS) value of 126.0 m concerning ship-measured water depths. It is noteworthy that when dealing with regions characterized by sparse survey line distributions, the GA-BP neural network stronger robustness compared to BPNN, showing less sensitivity to the distribution of survey data. Furthermore, the paper explores the influence of different data preprocessing methods on the neural network inversion of sea depths. This research introduces an optimization algorithm that reduces instability during BPNN initialization, resulting in a more accurate prediction of seafloor topography.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae229\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae229","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在使用反向传播神经网络(BPNN)反演海底地形(ST)时,随机选择参数可能会降低反演精度。为解决这一问题并实现更高效的全局搜索,本文引入了遗传算法-反向传播(GA-BP)神经网络。受益于遗传算法的全局搜索和并行计算能力,本研究利用多源重力数据完善了中国南海的海底地形。结果表明,GA-BP 模型与船舶测量水深的均方根值为 126.0 米。值得注意的是,在处理勘测线分布稀疏的区域时,与 BPNN 相比,GA-BP 神经网络具有更强的鲁棒性,对勘测数据分布的敏感性更低。此外,本文还探讨了不同数据预处理方法对神经网络反演海深的影响。该研究引入了一种优化算法,可降低 BPNN 初始化过程中的不稳定性,从而更准确地预测海底地形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seafloor topography refinement from multi-source data using genetic algorithm - backpropagation neural network
Summary During the inversion of seafloor topography (ST) using the backpropagation neural network (BPNN), the random selection of parameters may decrease the accuracy. To address this issue and achieve a more efficient global search, this paper introduces a genetic algorithm-backpropagation (GA-BP) neural network. Benefiting from the global search and parallel computing capabilities of the GA, this study refines the seafloor topography of the South China Sea using multi-source gravity data. The results indicate that the GA-BP model, with a root mean square (RMS) value of 126.0 m concerning ship-measured water depths. It is noteworthy that when dealing with regions characterized by sparse survey line distributions, the GA-BP neural network stronger robustness compared to BPNN, showing less sensitivity to the distribution of survey data. Furthermore, the paper explores the influence of different data preprocessing methods on the neural network inversion of sea depths. This research introduces an optimization algorithm that reduces instability during BPNN initialization, resulting in a more accurate prediction of seafloor topography.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Journal International
Geophysical Journal International 地学-地球化学与地球物理
CiteScore
5.40
自引率
10.70%
发文量
436
审稿时长
3.3 months
期刊介绍: Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信