利用决策树集合从接收函数中获取地壳结构图像

IF 2.8 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Yitan Wang, R M Russo, Yuanhang Lin
{"title":"利用决策树集合从接收函数中获取地壳结构图像","authors":"Yitan Wang, R M Russo, Yuanhang Lin","doi":"10.1093/gji/ggae226","DOIUrl":null,"url":null,"abstract":"Summary Mode conversion of P waves at the boundary between Earth's crust and upper mantle, when analyzed using receiver functions (RFs), allows characterization of Earth structure where seismic station density is high and earthquake sources are favorably distributed. We applied two ensemble decision tree algorithms – Random Forest (RanFor) and eXtreme Gradient Boost (XGBoost) – to synthetic and real RF data to assess these machine learning techniques' potential for crustal imaging when available data are sparse. The synthetic RFs, entailing both sharp increases in seismic velocity across the Moho and gradational Moho structures, calculated with and without added random noise, correspond to idealized crustal structures: a dipping Moho, Moho offset by crustal-scale faults, anti- and synform Moho structures and combinations of these. The RanFor/XGBoost algorithm recovers input structures well regardless of event-station distributions. Useful crustal and upper mantle seismic velocities can also be determined using RanFor and XGBoost, making it possible to image crustal thickness and P and S wave velocities simultaneously from receiver functions alone. We applied the trained RanFor/XGBoost to receiver functions determined from real seismic data recorded in the contiguous U.S., producing a map of the Moho and P and S wave velocities of the lowermost crust and uppermost mantle. Use of XGBoost, which evaluates residuals between input RFs and ground-truth to update the decision tree using the gradient of a penalty function, improves the crustal thickness estimates.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"83 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Decision Tree Ensembles for Crustal Structure Imaging from Receiver Functions\",\"authors\":\"Yitan Wang, R M Russo, Yuanhang Lin\",\"doi\":\"10.1093/gji/ggae226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Mode conversion of P waves at the boundary between Earth's crust and upper mantle, when analyzed using receiver functions (RFs), allows characterization of Earth structure where seismic station density is high and earthquake sources are favorably distributed. We applied two ensemble decision tree algorithms – Random Forest (RanFor) and eXtreme Gradient Boost (XGBoost) – to synthetic and real RF data to assess these machine learning techniques' potential for crustal imaging when available data are sparse. The synthetic RFs, entailing both sharp increases in seismic velocity across the Moho and gradational Moho structures, calculated with and without added random noise, correspond to idealized crustal structures: a dipping Moho, Moho offset by crustal-scale faults, anti- and synform Moho structures and combinations of these. The RanFor/XGBoost algorithm recovers input structures well regardless of event-station distributions. Useful crustal and upper mantle seismic velocities can also be determined using RanFor and XGBoost, making it possible to image crustal thickness and P and S wave velocities simultaneously from receiver functions alone. We applied the trained RanFor/XGBoost to receiver functions determined from real seismic data recorded in the contiguous U.S., producing a map of the Moho and P and S wave velocities of the lowermost crust and uppermost mantle. Use of XGBoost, which evaluates residuals between input RFs and ground-truth to update the decision tree using the gradient of a penalty function, improves the crustal thickness estimates.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae226\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae226","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用接收函数(RF)分析地壳和上地幔边界处 P 波的模式转换,可以确定地震台站密度高且震源分布合理的地球结构特征。我们将随机森林(RanFor)和极端梯度提升(XGBoost)这两种决策树算法应用于合成和真实射频数据,以评估这些机器学习技术在可用数据稀少的情况下用于地壳成像的潜力。合成射频数据包括莫霍区地震速度的急剧增加和渐变莫霍区结构,计算时添加和不添加随机噪声,这些数据对应于理想化的地壳结构:倾斜莫霍区、被地壳尺度断层抵消的莫霍区、反形和合形莫霍区结构以及这些结构的组合。无论事件站分布如何,RanFor/XGBoost 算法都能很好地恢复输入结构。使用 RanFor 和 XGBoost 算法还能确定有用的地壳和上地幔地震速度,从而有可能仅通过接收函数就能同时对地壳厚度以及 P 波和 S 波速度进行成像。我们将训练有素的 RanFor/XGBoost 应用于从美国毗连地区记录的真实地震数据中确定的接收函数,绘制出了莫霍线图以及最下部地壳和最上部地幔的 P 波和 S 波速度。XGBoost 可以评估输入射频和地面实况之间的残差,利用惩罚函数的梯度更新决策树,从而改进地壳厚度估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of Decision Tree Ensembles for Crustal Structure Imaging from Receiver Functions
Summary Mode conversion of P waves at the boundary between Earth's crust and upper mantle, when analyzed using receiver functions (RFs), allows characterization of Earth structure where seismic station density is high and earthquake sources are favorably distributed. We applied two ensemble decision tree algorithms – Random Forest (RanFor) and eXtreme Gradient Boost (XGBoost) – to synthetic and real RF data to assess these machine learning techniques' potential for crustal imaging when available data are sparse. The synthetic RFs, entailing both sharp increases in seismic velocity across the Moho and gradational Moho structures, calculated with and without added random noise, correspond to idealized crustal structures: a dipping Moho, Moho offset by crustal-scale faults, anti- and synform Moho structures and combinations of these. The RanFor/XGBoost algorithm recovers input structures well regardless of event-station distributions. Useful crustal and upper mantle seismic velocities can also be determined using RanFor and XGBoost, making it possible to image crustal thickness and P and S wave velocities simultaneously from receiver functions alone. We applied the trained RanFor/XGBoost to receiver functions determined from real seismic data recorded in the contiguous U.S., producing a map of the Moho and P and S wave velocities of the lowermost crust and uppermost mantle. Use of XGBoost, which evaluates residuals between input RFs and ground-truth to update the decision tree using the gradient of a penalty function, improves the crustal thickness estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Journal International
Geophysical Journal International 地学-地球化学与地球物理
CiteScore
5.40
自引率
10.70%
发文量
436
审稿时长
3.3 months
期刊介绍: Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信