1+1$$卡洛吉罗-莫瑟-萨瑟兰场论与高阶三角兰道-利夫希茨模型的等价性

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
K. R. Atalikov, A. V. Zotov
{"title":"1+1$$卡洛吉罗-莫瑟-萨瑟兰场论与高阶三角兰道-利夫希茨模型的等价性","authors":"K. R. Atalikov,&nbsp;A. V. Zotov","doi":"10.1134/S0040577924060096","DOIUrl":null,"url":null,"abstract":"<p> We consider the classical integrable <span>\\((1+1)\\)</span> trigonometric <span>\\(gl_N\\)</span> Landau–Lifshitz models constructed by means of quantum <span>\\(R\\)</span>-matrices that also satisfy the associative Yang–Baxter equation. It is shown that a <span>\\((1+1)\\)</span> field analogue of the trigonometric Calogero–Moser–Sutherland model is gauge equivalent to the Landau–Lifshitz model that arises from the Antonov–Hasegawa–Zabrodin trigonometric nonstandard <span>\\(R\\)</span>-matrix. The latter generalizes Cherednik’s <span>\\(7\\)</span>-vertex <span>\\(R\\)</span>-matrix in the <span>\\(GL_2\\)</span> case to the case of <span>\\(GL_N\\)</span>. An explicit change of variables between the <span>\\((1+1)\\)</span> models is obtained. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gauge equivalence of \\\\(1+1\\\\) Calogero–Moser–Sutherland field theory and a higher-rank trigonometric Landau–Lifshitz model\",\"authors\":\"K. R. Atalikov,&nbsp;A. V. Zotov\",\"doi\":\"10.1134/S0040577924060096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> We consider the classical integrable <span>\\\\((1+1)\\\\)</span> trigonometric <span>\\\\(gl_N\\\\)</span> Landau–Lifshitz models constructed by means of quantum <span>\\\\(R\\\\)</span>-matrices that also satisfy the associative Yang–Baxter equation. It is shown that a <span>\\\\((1+1)\\\\)</span> field analogue of the trigonometric Calogero–Moser–Sutherland model is gauge equivalent to the Landau–Lifshitz model that arises from the Antonov–Hasegawa–Zabrodin trigonometric nonstandard <span>\\\\(R\\\\)</span>-matrix. The latter generalizes Cherednik’s <span>\\\\(7\\\\)</span>-vertex <span>\\\\(R\\\\)</span>-matrix in the <span>\\\\(GL_2\\\\)</span> case to the case of <span>\\\\(GL_N\\\\)</span>. An explicit change of variables between the <span>\\\\((1+1)\\\\)</span> models is obtained. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924060096\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924060096","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

Abstract 我们考虑了通过量子(R)矩阵构造的经典可积分((1+1))三角Landau-Lifshitz模型,这些模型也满足关联Yang-Baxter方程。研究表明,卡洛吉罗-莫泽-萨瑟兰三角非标准\(R\)-矩阵的\((1+1)\)场类似物与Landau-Lifshitz模型是等价的。后者将切雷德尼克在\(GL_2\)情况下的\(7\)-顶点\(R\)-矩阵推广到了\(GL_N\)情况下。在((1+1))模型之间得到了明确的变量变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gauge equivalence of \(1+1\) Calogero–Moser–Sutherland field theory and a higher-rank trigonometric Landau–Lifshitz model

We consider the classical integrable \((1+1)\) trigonometric \(gl_N\) Landau–Lifshitz models constructed by means of quantum \(R\)-matrices that also satisfy the associative Yang–Baxter equation. It is shown that a \((1+1)\) field analogue of the trigonometric Calogero–Moser–Sutherland model is gauge equivalent to the Landau–Lifshitz model that arises from the Antonov–Hasegawa–Zabrodin trigonometric nonstandard \(R\)-matrix. The latter generalizes Cherednik’s \(7\)-vertex \(R\)-matrix in the \(GL_2\) case to the case of \(GL_N\). An explicit change of variables between the \((1+1)\) models is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信