重新审视阿德勒-博本科-苏里斯晶格方程和晶格布辛斯方程的解法

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Song-lin Zhao, Ke Yan, Ying-ying Sun
{"title":"重新审视阿德勒-博本科-苏里斯晶格方程和晶格布辛斯方程的解法","authors":"Song-lin Zhao,&nbsp;Ke Yan,&nbsp;Ying-ying Sun","doi":"10.1134/S0040577924060059","DOIUrl":null,"url":null,"abstract":"<p> Solutions of all Adler–Bobenko–Suris equations except <span>\\(Q4\\)</span>, and of several lattice Boussinesq-type equations are reconsidered by using the Cauchy matrix approach. By introducing a “fake” nonautonomous plane-wave factor, we derive soliton solutions, oscillatory solutions, and semi-oscillatory solutions of the target lattice equations. Unlike the conventional soliton solutions, the oscillatory solutions take constant values on all elementary quadrilaterals on <span>\\(\\mathbb{Z}^2\\)</span>, which demonstrates a periodic structure. </p>","PeriodicalId":797,"journal":{"name":"Theoretical and Mathematical Physics","volume":"219 3","pages":"944 - 972"},"PeriodicalIF":1.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations\",\"authors\":\"Song-lin Zhao,&nbsp;Ke Yan,&nbsp;Ying-ying Sun\",\"doi\":\"10.1134/S0040577924060059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p> Solutions of all Adler–Bobenko–Suris equations except <span>\\\\(Q4\\\\)</span>, and of several lattice Boussinesq-type equations are reconsidered by using the Cauchy matrix approach. By introducing a “fake” nonautonomous plane-wave factor, we derive soliton solutions, oscillatory solutions, and semi-oscillatory solutions of the target lattice equations. Unlike the conventional soliton solutions, the oscillatory solutions take constant values on all elementary quadrilaterals on <span>\\\\(\\\\mathbb{Z}^2\\\\)</span>, which demonstrates a periodic structure. </p>\",\"PeriodicalId\":797,\"journal\":{\"name\":\"Theoretical and Mathematical Physics\",\"volume\":\"219 3\",\"pages\":\"944 - 972\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0040577924060059\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0040577924060059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用考奇矩阵方法重新考虑了除\(Q4\)之外的所有阿德勒-博本科-苏里斯方程和几个布辛斯方程的解。通过引入一个 "假的 "非自主平面波因子,我们得出了目标晶格方程的孤子解、振荡解和半振荡解。与传统的孤子解不同,振荡解在\(\mathbb{Z}^2\)上的所有基本四边形上都取恒定值,这表明了一种周期性结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revisiting solutions of the Adler–Bobenko–Suris lattice  equations and lattice Boussinesq-type equations

Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations

Solutions of all Adler–Bobenko–Suris equations except \(Q4\), and of several lattice Boussinesq-type equations are reconsidered by using the Cauchy matrix approach. By introducing a “fake” nonautonomous plane-wave factor, we derive soliton solutions, oscillatory solutions, and semi-oscillatory solutions of the target lattice equations. Unlike the conventional soliton solutions, the oscillatory solutions take constant values on all elementary quadrilaterals on \(\mathbb{Z}^2\), which demonstrates a periodic structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theoretical and Mathematical Physics
Theoretical and Mathematical Physics 物理-物理:数学物理
CiteScore
1.60
自引率
20.00%
发文量
103
审稿时长
4-8 weeks
期刊介绍: Theoretical and Mathematical Physics covers quantum field theory and theory of elementary particles, fundamental problems of nuclear physics, many-body problems and statistical physics, nonrelativistic quantum mechanics, and basic problems of gravitation theory. Articles report on current developments in theoretical physics as well as related mathematical problems. Theoretical and Mathematical Physics is published in collaboration with the Steklov Mathematical Institute of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信