无死角有限图谱的谱对应关系

K.-U. Bux, J. Hilgert, T. Weich
{"title":"无死角有限图谱的谱对应关系","authors":"K.-U. Bux, J. Hilgert, T. Weich","doi":"10.1016/j.indag.2024.05.001","DOIUrl":null,"url":null,"abstract":"We compare the spectral properties of two kinds of linear operators characterizing the (classical) geodesic flow and its quantization on connected locally finite graphs without dead ends. The first kind are transfer operators acting on vector spaces associated with the set of non-backtracking paths in the graphs. The second kind of operators are averaging operators acting on vector spaces associated with the space of vertices of the graph. The choice of vector spaces reflects regularity properties. Our main results are correspondences between classical and quantum spectral objects as well as some automatic regularity properties for eigenfunctions of transfer operators.","PeriodicalId":501252,"journal":{"name":"Indagationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral correspondences for finite graphs without dead ends\",\"authors\":\"K.-U. Bux, J. Hilgert, T. Weich\",\"doi\":\"10.1016/j.indag.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compare the spectral properties of two kinds of linear operators characterizing the (classical) geodesic flow and its quantization on connected locally finite graphs without dead ends. The first kind are transfer operators acting on vector spaces associated with the set of non-backtracking paths in the graphs. The second kind of operators are averaging operators acting on vector spaces associated with the space of vertices of the graph. The choice of vector spaces reflects regularity properties. Our main results are correspondences between classical and quantum spectral objects as well as some automatic regularity properties for eigenfunctions of transfer operators.\",\"PeriodicalId\":501252,\"journal\":{\"name\":\"Indagationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.indag.2024.05.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.indag.2024.05.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们比较了两类线性算子的频谱特性,它们表征了(经典)大地流及其在无死角连通局部有限图上的量化。第一种是作用于与图中非回溯路径集相关的向量空间的转移算子。第二类算子是作用于与图顶点空间相关的向量空间的平均算子。向量空间的选择反映了正则特性。我们的主要成果是经典和量子光谱对象之间的对应关系,以及转移算子特征函数的一些自动正则特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral correspondences for finite graphs without dead ends
We compare the spectral properties of two kinds of linear operators characterizing the (classical) geodesic flow and its quantization on connected locally finite graphs without dead ends. The first kind are transfer operators acting on vector spaces associated with the set of non-backtracking paths in the graphs. The second kind of operators are averaging operators acting on vector spaces associated with the space of vertices of the graph. The choice of vector spaces reflects regularity properties. Our main results are correspondences between classical and quantum spectral objects as well as some automatic regularity properties for eigenfunctions of transfer operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信