{"title":"通过华北多代岩浆记录揭示 8.2 ka 前后的一系列气候振荡","authors":"Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, Hai Cheng","doi":"10.5194/cp-20-1401-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The 8.2 ka event has been extensively investigated as a remarkable single event but rarely considered as a part of multi-centennial climatic evolution. Here, we present absolutely dated speleothem multi-proxy records spanning 9.0–7.9 ka from Beijing in North China, near the northern limit of the East Asian summer monsoon (EASM) and thus sensitive to climate change, to provide evidence of the intensified multi-decadal climatic oscillations since 8.52 ka. Three extreme excursions characterized by inter-decadal consecutive δ18O excursions exceeding ±1σ are identified from 8.52 ka in our speleothem record. The earlier two are characterized by enriched 18O at ∼8.50 and 8.20 ka, respectively, suggesting a prolonged arid event, which is supported by the positive trend in δ13C values, increased trace element ratios, and lower growth rate. Following the 8.2 ka event, an excessive rebound immediately emerges in our δ18O and trace element records but moderate in the δ13C, probably suggesting pluvial conditions and nonlinear response of the local ecosystem. Following two similar severe droughts at 8.50 and 8.20 ka, the different behavior of δ13C suggests the recovering degree of resilient ecosystem responding to different rebounded rainfall intensity. A comparison with other high-resolution records suggests that the two droughts–one pluvial pattern between 8.52 and 8.0 ka is of global significance instead of being a regional phenomenon, and is causally linked to the slowdown and acceleration of the Atlantic Meridional Overturning Circulation that was further dominated by the freshwater injections in the North Atlantic.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"13 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A series of climate oscillations around 8.2 ka revealed through multi-proxy speleothem records from North China\",\"authors\":\"Pengzhen Duan, Hanying Li, Zhibang Ma, Jingyao Zhao, Xiyu Dong, Ashish Sinha, Peng Hu, Haiwei Zhang, Youfeng Ning, Guangyou Zhu, Hai Cheng\",\"doi\":\"10.5194/cp-20-1401-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The 8.2 ka event has been extensively investigated as a remarkable single event but rarely considered as a part of multi-centennial climatic evolution. Here, we present absolutely dated speleothem multi-proxy records spanning 9.0–7.9 ka from Beijing in North China, near the northern limit of the East Asian summer monsoon (EASM) and thus sensitive to climate change, to provide evidence of the intensified multi-decadal climatic oscillations since 8.52 ka. Three extreme excursions characterized by inter-decadal consecutive δ18O excursions exceeding ±1σ are identified from 8.52 ka in our speleothem record. The earlier two are characterized by enriched 18O at ∼8.50 and 8.20 ka, respectively, suggesting a prolonged arid event, which is supported by the positive trend in δ13C values, increased trace element ratios, and lower growth rate. Following the 8.2 ka event, an excessive rebound immediately emerges in our δ18O and trace element records but moderate in the δ13C, probably suggesting pluvial conditions and nonlinear response of the local ecosystem. Following two similar severe droughts at 8.50 and 8.20 ka, the different behavior of δ13C suggests the recovering degree of resilient ecosystem responding to different rebounded rainfall intensity. A comparison with other high-resolution records suggests that the two droughts–one pluvial pattern between 8.52 and 8.0 ka is of global significance instead of being a regional phenomenon, and is causally linked to the slowdown and acceleration of the Atlantic Meridional Overturning Circulation that was further dominated by the freshwater injections in the North Atlantic.\",\"PeriodicalId\":10332,\"journal\":{\"name\":\"Climate of The Past\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/cp-20-1401-2024\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-20-1401-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
摘要。8.2 ka事件作为一个显著的单一事件已被广泛研究,但很少被视为多世纪气候演变的一部分。这里,我们展示了华北地区北京的9.0-7.9 ka绝对年代的岩浆多代记录,这些记录靠近东亚夏季季风(EASM)的北部界限,因此对气候变化非常敏感,为8.52 ka以来加剧的多年代气候振荡提供了证据。在我们的岩浆记录中发现了自 8.52 ka 以来的三次极端偏移,其特征是年代际连续的 δ18O 偏差超过 ±1σ。前两次分别在 8.50 ka 和 8.20 ka 出现 18O 富集,表明这是一次长期的干旱事件,δ13C 值的正向变化趋势、微量元素比率的增加以及较低的生长率都证明了这一点。在 8.2 ka 事件之后,我们的δ18O 和微量元素记录中立即出现了过度反弹,但δ13C 值却有所缓和,这可能表明了当地生态系统的冲积条件和非线性反应。在 8.50 ka 和 8.20 ka 两次类似的严重干旱之后,δ13C 的不同表现表明了生态系统对不同的降雨强度反弹的恢复程度。与其他高分辨率记录的比较表明,8.52 和 8.0 ka 之间的 "两旱一涝 "模式具有全球意义,而非区域现象,它与大西洋经向翻转环流的减缓和加速有因果关系,而北大西洋的淡水注入进一步主导了大西洋经向翻转环流。
A series of climate oscillations around 8.2 ka revealed through multi-proxy speleothem records from North China
Abstract. The 8.2 ka event has been extensively investigated as a remarkable single event but rarely considered as a part of multi-centennial climatic evolution. Here, we present absolutely dated speleothem multi-proxy records spanning 9.0–7.9 ka from Beijing in North China, near the northern limit of the East Asian summer monsoon (EASM) and thus sensitive to climate change, to provide evidence of the intensified multi-decadal climatic oscillations since 8.52 ka. Three extreme excursions characterized by inter-decadal consecutive δ18O excursions exceeding ±1σ are identified from 8.52 ka in our speleothem record. The earlier two are characterized by enriched 18O at ∼8.50 and 8.20 ka, respectively, suggesting a prolonged arid event, which is supported by the positive trend in δ13C values, increased trace element ratios, and lower growth rate. Following the 8.2 ka event, an excessive rebound immediately emerges in our δ18O and trace element records but moderate in the δ13C, probably suggesting pluvial conditions and nonlinear response of the local ecosystem. Following two similar severe droughts at 8.50 and 8.20 ka, the different behavior of δ13C suggests the recovering degree of resilient ecosystem responding to different rebounded rainfall intensity. A comparison with other high-resolution records suggests that the two droughts–one pluvial pattern between 8.52 and 8.0 ka is of global significance instead of being a regional phenomenon, and is causally linked to the slowdown and acceleration of the Atlantic Meridional Overturning Circulation that was further dominated by the freshwater injections in the North Atlantic.
期刊介绍:
Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope.
The main subject areas are the following:
reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives;
development and validation of new proxies, improvements of the precision and accuracy of proxy data;
theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales;
simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.