带有内圆柱和环形肋条的三明治壳体的扑动

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, COMPOSITES
V. N. Bakulin, A. Ya. Nedbai
{"title":"带有内圆柱和环形肋条的三明治壳体的扑动","authors":"V. N. Bakulin, A. Ya. Nedbai","doi":"10.1007/s11029-024-10214-1","DOIUrl":null,"url":null,"abstract":"<p>A promising mathematical model is considered for studying the aeroelastic stability of sandwich shells supported by an internal hollow elastic cylinder and annular ribs. Using the relations derived, the influence of thickness of the inner hollow cylinder, the length of the shell, and the shear modulus of core on the critical air flow speed leading to the occurrence of flutter was studied. Based on the calculations performed, recommendations were developed for choosing parameters of the sandwich composite structure considered. The mathematical model presented makes it possible to expand the range of topical scientific and applied problems that can be solved in the field of aeroelastic stability of sandwich shells.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flutter of a Sandwich Shell with Inner Cylinder and Annular Ribs\",\"authors\":\"V. N. Bakulin, A. Ya. Nedbai\",\"doi\":\"10.1007/s11029-024-10214-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A promising mathematical model is considered for studying the aeroelastic stability of sandwich shells supported by an internal hollow elastic cylinder and annular ribs. Using the relations derived, the influence of thickness of the inner hollow cylinder, the length of the shell, and the shear modulus of core on the critical air flow speed leading to the occurrence of flutter was studied. Based on the calculations performed, recommendations were developed for choosing parameters of the sandwich composite structure considered. The mathematical model presented makes it possible to expand the range of topical scientific and applied problems that can be solved in the field of aeroelastic stability of sandwich shells.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-024-10214-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-024-10214-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

为研究由内部空心弹性圆柱体和环形肋条支撑的夹层壳体的气动弹性稳定性,考虑了一个很有前途的数学模型。利用推导出的关系,研究了内空心圆柱体的厚度、壳体的长度和夹芯的剪切模量对导致发生扑翼的临界气流速度的影响。根据计算结果,提出了选择夹层复合结构参数的建议。所提出的数学模型使夹层结构壳体气动弹性稳定性领域可解决的专题科学和应用问题的范围得以扩大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flutter of a Sandwich Shell with Inner Cylinder and Annular Ribs

Flutter of a Sandwich Shell with Inner Cylinder and Annular Ribs

A promising mathematical model is considered for studying the aeroelastic stability of sandwich shells supported by an internal hollow elastic cylinder and annular ribs. Using the relations derived, the influence of thickness of the inner hollow cylinder, the length of the shell, and the shear modulus of core on the critical air flow speed leading to the occurrence of flutter was studied. Based on the calculations performed, recommendations were developed for choosing parameters of the sandwich composite structure considered. The mathematical model presented makes it possible to expand the range of topical scientific and applied problems that can be solved in the field of aeroelastic stability of sandwich shells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Composite Materials
Mechanics of Composite Materials 工程技术-材料科学:复合
CiteScore
2.90
自引率
17.60%
发文量
73
审稿时长
12 months
期刊介绍: Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to: damage, failure, fatigue, and long-term strength; methods of optimum design of materials and structures; prediction of long-term properties and aging problems; nondestructive testing; mechanical aspects of technology; mechanics of nanocomposites; mechanics of biocomposites; composites in aerospace and wind-power engineering; composites in civil engineering and infrastructure and other composites applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信