论多项式上的自动表征系数

Shu Luo, Huixue Lao
{"title":"论多项式上的自动表征系数","authors":"Shu Luo, Huixue Lao","doi":"10.1007/s11139-024-00889-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\pi \\)</span> be a cuspidal automorphic representation of <span>\\(\\textrm{GL}_2(\\mathbb {A}_\\mathbb {Q})\\)</span> associated to holomorphic forms with Fourier coefficients <span>\\(a_{ \\pi }(n)\\)</span>. Consider an automorphic representation <span>\\(\\Pi \\)</span> which is equivalent to <span>\\(\\textrm{sym}^m \\pi \\)</span> or <span>\\(\\pi \\times \\textrm{sym}^m \\pi \\)</span>. We establish uniform upper bounds for <span>\\(\\sum _{n\\leqslant X} |a_{\\Pi } (|f(n)|)|\\)</span>, where <span>\\(f(x)\\in \\mathbb {Z}[x]\\)</span> is a polynomial of arbitrary degree. This builds on the work of Chiriac and Yang, and refines one of their results.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the coefficients of automorphic representations over polynomials\",\"authors\":\"Shu Luo, Huixue Lao\",\"doi\":\"10.1007/s11139-024-00889-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\pi \\\\)</span> be a cuspidal automorphic representation of <span>\\\\(\\\\textrm{GL}_2(\\\\mathbb {A}_\\\\mathbb {Q})\\\\)</span> associated to holomorphic forms with Fourier coefficients <span>\\\\(a_{ \\\\pi }(n)\\\\)</span>. Consider an automorphic representation <span>\\\\(\\\\Pi \\\\)</span> which is equivalent to <span>\\\\(\\\\textrm{sym}^m \\\\pi \\\\)</span> or <span>\\\\(\\\\pi \\\\times \\\\textrm{sym}^m \\\\pi \\\\)</span>. We establish uniform upper bounds for <span>\\\\(\\\\sum _{n\\\\leqslant X} |a_{\\\\Pi } (|f(n)|)|\\\\)</span>, where <span>\\\\(f(x)\\\\in \\\\mathbb {Z}[x]\\\\)</span> is a polynomial of arbitrary degree. This builds on the work of Chiriac and Yang, and refines one of their results.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00889-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00889-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\pi \) 是 \(\textrm{GL}_2(\mathbb {A}_\mathbb {Q})\)的一个尖顶自形表示,它与具有傅里叶系数的全纯形式 \(a_{ \pi }(n)\) 相关联。考虑等价于 \(\textrm{sym}^m \pi \) 或 \(\pi \times \textrm{sym}^m \pi \) 的自变量表示 \(\Pi \)。我们为 \(sum _{n\leqslant X} 建立了统一上限。|a_{\Pi }(|f(n)|)|\), 其中 \(f(x)\in \mathbb {Z}[x]\) 是任意度的多项式。这建立在 Chiriac 和 Yang 的研究基础之上,并完善了他们的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the coefficients of automorphic representations over polynomials

Let \(\pi \) be a cuspidal automorphic representation of \(\textrm{GL}_2(\mathbb {A}_\mathbb {Q})\) associated to holomorphic forms with Fourier coefficients \(a_{ \pi }(n)\). Consider an automorphic representation \(\Pi \) which is equivalent to \(\textrm{sym}^m \pi \) or \(\pi \times \textrm{sym}^m \pi \). We establish uniform upper bounds for \(\sum _{n\leqslant X} |a_{\Pi } (|f(n)|)|\), where \(f(x)\in \mathbb {Z}[x]\) is a polynomial of arbitrary degree. This builds on the work of Chiriac and Yang, and refines one of their results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信