论广义的((k,\psi))-希尔费比例分数算子及其在高阶考奇问题中的应用

IF 1.7 4区 数学 Q1 Mathematics
Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon
{"title":"论广义的((k,\\psi))-希尔费比例分数算子及其在高阶考奇问题中的应用","authors":"Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon","doi":"10.1186/s13661-024-01891-x","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel idea of generalized $({{k}},\\psi )$ -Hilfer proportional fractional operators. The proposed operator combines the $({{k}},\\psi )$ -Riemann–Liouville and $({{k}},\\psi )$ -Caputo proportional fractional operators. Some properties and auxiliary results of the proposed operators are investigated. The ψ-Laplace transform and its properties of the proposed operators are established and utilized to solve Cauchy-type problems. Furthermore, the uniqueness result for a higher-order initial value problem under $({{k}},\\psi )$ -Hilfer proportional fractional operators is proved by using Picard’s iterative technique. At the end, examples are provided to present the theoretical results. This new type of proposed operator can help other researchers who are still working on real-world problems.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generalized \\\\((k,\\\\psi )\\\\)-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem\",\"authors\":\"Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon\",\"doi\":\"10.1186/s13661-024-01891-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a novel idea of generalized $({{k}},\\\\psi )$ -Hilfer proportional fractional operators. The proposed operator combines the $({{k}},\\\\psi )$ -Riemann–Liouville and $({{k}},\\\\psi )$ -Caputo proportional fractional operators. Some properties and auxiliary results of the proposed operators are investigated. The ψ-Laplace transform and its properties of the proposed operators are established and utilized to solve Cauchy-type problems. Furthermore, the uniqueness result for a higher-order initial value problem under $({{k}},\\\\psi )$ -Hilfer proportional fractional operators is proved by using Picard’s iterative technique. At the end, examples are provided to present the theoretical results. This new type of proposed operator can help other researchers who are still working on real-world problems.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01891-x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01891-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了广义 $({{k}},\psi )$ -Hilfer 比例分数算子的新思想。所提出的算子结合了 $({{k}},\psi )$ -Riemann-Liouville 和 $({{k}},\psi )$ -Caputo 比例分数算子。研究了所提算子的一些性质和辅助结果。建立了所提算子的ψ-拉普拉斯变换及其性质,并将其用于求解考奇类问题。此外,利用皮卡尔迭代技术证明了$({{k}},\psi )$ -希尔费比例分式算子下高阶初值问题的唯一性结果。最后,举例说明了理论结果。这种新型的建议算子可以帮助其他仍在研究实际问题的研究人员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On generalized \((k,\psi )\)-Hilfer proportional fractional operator and its applications to the higher-order Cauchy problem
In this work, we introduce a novel idea of generalized $({{k}},\psi )$ -Hilfer proportional fractional operators. The proposed operator combines the $({{k}},\psi )$ -Riemann–Liouville and $({{k}},\psi )$ -Caputo proportional fractional operators. Some properties and auxiliary results of the proposed operators are investigated. The ψ-Laplace transform and its properties of the proposed operators are established and utilized to solve Cauchy-type problems. Furthermore, the uniqueness result for a higher-order initial value problem under $({{k}},\psi )$ -Hilfer proportional fractional operators is proved by using Picard’s iterative technique. At the end, examples are provided to present the theoretical results. This new type of proposed operator can help other researchers who are still working on real-world problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信