$$\sigma _o\text {mex}(n)$$ 和 $$\sigma _e\text {mex}(n)$$ 的算术性质和渐近公式

Rupam Barman, Gurinder Singh
{"title":"$$\\sigma _o\\text {mex}(n)$$ 和 $$\\sigma _e\\text {mex}(n)$$ 的算术性质和渐近公式","authors":"Rupam Barman, Gurinder Singh","doi":"10.1007/s11139-024-00886-7","DOIUrl":null,"url":null,"abstract":"<p>The minimal excludant of an integer partition is the least positive integer missing from the partition. Let <span>\\(\\sigma _o\\text {mex}(n)\\)</span> (resp., <span>\\(\\sigma _e\\text {mex}(n)\\)</span>) denote the sum of odd (resp., even) minimal excludants over all the partitions of <i>n</i>. Recently, Baruah et al. proved a few congruences for these partition functions modulo 4 and 8, and asked for asymptotic formulae for the same. In this article, we find Hardy-Ramanujan type asymptotic formulae for both <span>\\(\\sigma _o\\text {mex}(n)\\)</span> and <span>\\(\\sigma _e\\text {mex}(n)\\)</span>. We also prove some infinite families of congruences for <span>\\(\\sigma _o\\text {mex}(n)\\)</span> and <span>\\(\\sigma _e\\text {mex}(n)\\)</span> modulo 4 and 8</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic properties and asymptotic formulae for $$\\\\sigma _o\\\\text {mex}(n)$$ and $$\\\\sigma _e\\\\text {mex}(n)$$\",\"authors\":\"Rupam Barman, Gurinder Singh\",\"doi\":\"10.1007/s11139-024-00886-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The minimal excludant of an integer partition is the least positive integer missing from the partition. Let <span>\\\\(\\\\sigma _o\\\\text {mex}(n)\\\\)</span> (resp., <span>\\\\(\\\\sigma _e\\\\text {mex}(n)\\\\)</span>) denote the sum of odd (resp., even) minimal excludants over all the partitions of <i>n</i>. Recently, Baruah et al. proved a few congruences for these partition functions modulo 4 and 8, and asked for asymptotic formulae for the same. In this article, we find Hardy-Ramanujan type asymptotic formulae for both <span>\\\\(\\\\sigma _o\\\\text {mex}(n)\\\\)</span> and <span>\\\\(\\\\sigma _e\\\\text {mex}(n)\\\\)</span>. We also prove some infinite families of congruences for <span>\\\\(\\\\sigma _o\\\\text {mex}(n)\\\\)</span> and <span>\\\\(\\\\sigma _e\\\\text {mex}(n)\\\\)</span> modulo 4 and 8</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00886-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00886-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个整数分割的最小不等式是分割中缺少的最小正整数。让 \(\sigma _o\text {mex}(n)\) (或者, \(\sigma _e\text {mex}(n)\) )表示 n 的所有分区的奇数(或者,偶数)最小不等式之和。最近,巴鲁阿(Baruah)等人证明了这些分治函数 modulo 4 和 8 的一些同余式,并要求得到同样的渐近公式。在这篇文章中,我们找到了 \(\sigma _o\text {mex}(n)\) 和 \(\sigma _e\text {mex}(n)\) 的哈代-拉玛努扬式渐近公式。我们还证明了 \(\sigma _o\text {mex}(n)\) 和 \(\sigma _e\text {mex}(n)\) modulo 4 和 8 的一些无穷全等族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic properties and asymptotic formulae for $$\sigma _o\text {mex}(n)$$ and $$\sigma _e\text {mex}(n)$$

The minimal excludant of an integer partition is the least positive integer missing from the partition. Let \(\sigma _o\text {mex}(n)\) (resp., \(\sigma _e\text {mex}(n)\)) denote the sum of odd (resp., even) minimal excludants over all the partitions of n. Recently, Baruah et al. proved a few congruences for these partition functions modulo 4 and 8, and asked for asymptotic formulae for the same. In this article, we find Hardy-Ramanujan type asymptotic formulae for both \(\sigma _o\text {mex}(n)\) and \(\sigma _e\text {mex}(n)\). We also prove some infinite families of congruences for \(\sigma _o\text {mex}(n)\) and \(\sigma _e\text {mex}(n)\) modulo 4 and 8

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信