{"title":"涉及 r 个整数的对数权重之和","authors":"Isao Kiuchi","doi":"10.1007/s11139-024-00891-w","DOIUrl":null,"url":null,"abstract":"<p>Let (<i>n</i>, <i>q</i>) denote the greatest common divisor of positive integers <i>n</i> and <i>q</i>, and let <span>\\(f_{r}\\)</span> denote the characteristic function of <i>r</i>-full numbers. We consider several asymptotic formulas for sums of the modified square-full (<span>\\(r=2\\)</span>) and cube-full numbers (<span>\\(r=3\\)</span>), which is <span>\\(\\sum _{n\\le y}\\sum _{q\\le x}\\sum _{d|(n,q)}df_{r}\\left( \\frac{q}{d}\\right) \\log \\frac{x}{q}\\)</span> with any positive real numbers <i>x</i> and <i>y</i>. Moreover, we derive the asymptotic formula of the above with <span>\\(r=2\\)</span> under the Riemann Hypothesis.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sums of logarithmic weights involving r-full numbers\",\"authors\":\"Isao Kiuchi\",\"doi\":\"10.1007/s11139-024-00891-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let (<i>n</i>, <i>q</i>) denote the greatest common divisor of positive integers <i>n</i> and <i>q</i>, and let <span>\\\\(f_{r}\\\\)</span> denote the characteristic function of <i>r</i>-full numbers. We consider several asymptotic formulas for sums of the modified square-full (<span>\\\\(r=2\\\\)</span>) and cube-full numbers (<span>\\\\(r=3\\\\)</span>), which is <span>\\\\(\\\\sum _{n\\\\le y}\\\\sum _{q\\\\le x}\\\\sum _{d|(n,q)}df_{r}\\\\left( \\\\frac{q}{d}\\\\right) \\\\log \\\\frac{x}{q}\\\\)</span> with any positive real numbers <i>x</i> and <i>y</i>. Moreover, we derive the asymptotic formula of the above with <span>\\\\(r=2\\\\)</span> under the Riemann Hypothesis.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00891-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00891-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 (n, q) 表示正整数 n 和 q 的最大公约数,让 \(f_{r}\) 表示 r 个整数的特征函数。我们考虑修正的平方整数(\(r=2\))和立方整数(\(r=3\))之和的几个渐近公式、即 \(\sum _{n\le y}\sum _{q\le x}\sum _{d|(n,q)}df_{r}\left( \frac{q}{d}\right) \log \frac{x}{q}\) with any positive real numbers x and y.此外,我们还推导了黎曼假说下上述公式的渐近公式(r=2)。
Sums of logarithmic weights involving r-full numbers
Let (n, q) denote the greatest common divisor of positive integers n and q, and let \(f_{r}\) denote the characteristic function of r-full numbers. We consider several asymptotic formulas for sums of the modified square-full (\(r=2\)) and cube-full numbers (\(r=3\)), which is \(\sum _{n\le y}\sum _{q\le x}\sum _{d|(n,q)}df_{r}\left( \frac{q}{d}\right) \log \frac{x}{q}\) with any positive real numbers x and y. Moreover, we derive the asymptotic formula of the above with \(r=2\) under the Riemann Hypothesis.