卡纳德-拉塞尔猜想的顶点算子模9重述

Shunsuke Tsuchioka
{"title":"卡纳德-拉塞尔猜想的顶点算子模9重述","authors":"Shunsuke Tsuchioka","doi":"10.1007/s11139-024-00895-6","DOIUrl":null,"url":null,"abstract":"<p>We reformulate the Kanade–Russell conjecture modulo 9 via the vertex operators for the level 3 standard modules of type <span>\\(D^{(3)}_{4}\\)</span>. Along the same lines, we arrive at three partition theorems which may be regarded as an <span>\\(A^{(2)}_{4}\\)</span> analog of the conjecture. Andrews–van Ekeren–Heluani have proven one of them, and we point out that the others are easily proven from their results.</p>","PeriodicalId":501430,"journal":{"name":"The Ramanujan Journal","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A vertex operator reformulation of the Kanade–Russell conjecture modulo 9\",\"authors\":\"Shunsuke Tsuchioka\",\"doi\":\"10.1007/s11139-024-00895-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We reformulate the Kanade–Russell conjecture modulo 9 via the vertex operators for the level 3 standard modules of type <span>\\\\(D^{(3)}_{4}\\\\)</span>. Along the same lines, we arrive at three partition theorems which may be regarded as an <span>\\\\(A^{(2)}_{4}\\\\)</span> analog of the conjecture. Andrews–van Ekeren–Heluani have proven one of them, and we point out that the others are easily proven from their results.</p>\",\"PeriodicalId\":501430,\"journal\":{\"name\":\"The Ramanujan Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Ramanujan Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11139-024-00895-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Ramanujan Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11139-024-00895-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过类型 \(D^{(3)}_{4}\ 的第 3 层标准模块的顶点算子重新阐述了模 9 的卡纳德-拉塞尔猜想。)沿着同样的思路,我们得出了三个分治定理,它们可以被视为该猜想的 \(A^{(2)}_{4}\ 类似定理。安德鲁斯-凡-埃克伦-赫鲁阿尼已经证明了其中的一个,我们指出其他的定理也很容易从他们的结果中得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A vertex operator reformulation of the Kanade–Russell conjecture modulo 9

A vertex operator reformulation of the Kanade–Russell conjecture modulo 9

We reformulate the Kanade–Russell conjecture modulo 9 via the vertex operators for the level 3 standard modules of type \(D^{(3)}_{4}\). Along the same lines, we arrive at three partition theorems which may be regarded as an \(A^{(2)}_{4}\) analog of the conjecture. Andrews–van Ekeren–Heluani have proven one of them, and we point out that the others are easily proven from their results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信