{"title":"华南地块东南缘晚三叠世-中侏罗世碎屑锆石对古太平洋板块俯冲的影响","authors":"","doi":"10.1016/j.chemer.2024.126152","DOIUrl":null,"url":null,"abstract":"<div><p><span>There existed an early Mesozoic tectonic regime transformation in the South China Block (SCB). Although it was believed that this transformation was closely related to the subduction of Paleo-Pacific Plate, the process and initial time of the subduction of the Paleo-Pacific Plate have been controversial for a long time. Based on the published Upper Triassic and Middle Jurassic<span><span> succession detrital zircons </span>geochronology<span> from the southeastern margin of the SCB, the newly obtained Late Triassic to Middle Jurassic detrital zircons Hf isotope data, and the available magmatic age data and Hf isotope data, this study discussed the subduction of the Paleo-Pacific Plate. The Hf isotope composition of zircon grains selected from the Early Mesozoic strata of the SCB, spanning from the Late Triassic to the Middle Jurassic, exhibits a consistent temporal trend with that of the Triassic–Middle Jurassic magmatic rocks. Both display a transition from negative to positive ε</span></span></span><sub>Hf</sub><span>(t) values, indicative of a gradually increasing contribution of mantle-derived materials from the Triassic to the Middle Jurassic. Zircon trace elements indicate that a magmatic arc appeared outside the southeastern margin of the SCB at 200–190 Ma and continued to develop into the Middle Jurassic, which may have been generated by the Paleo-Pacific Plate subduction. This study proposed that the Paleo-Pacific Plate subduction was confined to the southeastern coast of the SCB in the Late Triassic, and the subduction of the flat slab was halted by obstruction at the end of the Late Triassic. In the Early Jurassic, the Paleo-Pacific Plate began to subduction again, and arc-related magmatic rocks were formed along the coast of SCB. At the same time, due to the remote effect of the subduction of the Paleo-Pacific Plate, the weak tectonic belt existing in the Nanling area was reactivated, resulting in the Nanling area in the intraplate extensional setting. Subsequently, the continuous subduction of the Paleo-Pacific Plate led to the thickening of the crust along the SCB in the Middle Jurassic, and the Nanling area was still under in the extensional setting.</span></p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 3","pages":"Article 126152"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of Late Triassic–Middle Jurassic detrital zircons from the southeastern margin of the South China Block for the Paleo-Pacific Plate subduction\",\"authors\":\"\",\"doi\":\"10.1016/j.chemer.2024.126152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>There existed an early Mesozoic tectonic regime transformation in the South China Block (SCB). Although it was believed that this transformation was closely related to the subduction of Paleo-Pacific Plate, the process and initial time of the subduction of the Paleo-Pacific Plate have been controversial for a long time. Based on the published Upper Triassic and Middle Jurassic<span><span> succession detrital zircons </span>geochronology<span> from the southeastern margin of the SCB, the newly obtained Late Triassic to Middle Jurassic detrital zircons Hf isotope data, and the available magmatic age data and Hf isotope data, this study discussed the subduction of the Paleo-Pacific Plate. The Hf isotope composition of zircon grains selected from the Early Mesozoic strata of the SCB, spanning from the Late Triassic to the Middle Jurassic, exhibits a consistent temporal trend with that of the Triassic–Middle Jurassic magmatic rocks. Both display a transition from negative to positive ε</span></span></span><sub>Hf</sub><span>(t) values, indicative of a gradually increasing contribution of mantle-derived materials from the Triassic to the Middle Jurassic. Zircon trace elements indicate that a magmatic arc appeared outside the southeastern margin of the SCB at 200–190 Ma and continued to develop into the Middle Jurassic, which may have been generated by the Paleo-Pacific Plate subduction. This study proposed that the Paleo-Pacific Plate subduction was confined to the southeastern coast of the SCB in the Late Triassic, and the subduction of the flat slab was halted by obstruction at the end of the Late Triassic. In the Early Jurassic, the Paleo-Pacific Plate began to subduction again, and arc-related magmatic rocks were formed along the coast of SCB. At the same time, due to the remote effect of the subduction of the Paleo-Pacific Plate, the weak tectonic belt existing in the Nanling area was reactivated, resulting in the Nanling area in the intraplate extensional setting. Subsequently, the continuous subduction of the Paleo-Pacific Plate led to the thickening of the crust along the SCB in the Middle Jurassic, and the Nanling area was still under in the extensional setting.</span></p></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"84 3\",\"pages\":\"Article 126152\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281924000771\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281924000771","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Implications of Late Triassic–Middle Jurassic detrital zircons from the southeastern margin of the South China Block for the Paleo-Pacific Plate subduction
There existed an early Mesozoic tectonic regime transformation in the South China Block (SCB). Although it was believed that this transformation was closely related to the subduction of Paleo-Pacific Plate, the process and initial time of the subduction of the Paleo-Pacific Plate have been controversial for a long time. Based on the published Upper Triassic and Middle Jurassic succession detrital zircons geochronology from the southeastern margin of the SCB, the newly obtained Late Triassic to Middle Jurassic detrital zircons Hf isotope data, and the available magmatic age data and Hf isotope data, this study discussed the subduction of the Paleo-Pacific Plate. The Hf isotope composition of zircon grains selected from the Early Mesozoic strata of the SCB, spanning from the Late Triassic to the Middle Jurassic, exhibits a consistent temporal trend with that of the Triassic–Middle Jurassic magmatic rocks. Both display a transition from negative to positive εHf(t) values, indicative of a gradually increasing contribution of mantle-derived materials from the Triassic to the Middle Jurassic. Zircon trace elements indicate that a magmatic arc appeared outside the southeastern margin of the SCB at 200–190 Ma and continued to develop into the Middle Jurassic, which may have been generated by the Paleo-Pacific Plate subduction. This study proposed that the Paleo-Pacific Plate subduction was confined to the southeastern coast of the SCB in the Late Triassic, and the subduction of the flat slab was halted by obstruction at the end of the Late Triassic. In the Early Jurassic, the Paleo-Pacific Plate began to subduction again, and arc-related magmatic rocks were formed along the coast of SCB. At the same time, due to the remote effect of the subduction of the Paleo-Pacific Plate, the weak tectonic belt existing in the Nanling area was reactivated, resulting in the Nanling area in the intraplate extensional setting. Subsequently, the continuous subduction of the Paleo-Pacific Plate led to the thickening of the crust along the SCB in the Middle Jurassic, and the Nanling area was still under in the extensional setting.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry