复立方卡马萨-霍尔姆方程的长时渐近线

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Hongyi Zhang, Yufeng Zhang, Binlu Feng
{"title":"复立方卡马萨-霍尔姆方程的长时渐近线","authors":"Hongyi Zhang,&nbsp;Yufeng Zhang,&nbsp;Binlu Feng","doi":"10.1007/s11005-024-01833-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the Cauchy problem of the following complex cubic Camassa–Holm equation </p><div><div><span>$$\\begin{aligned} m_{t}=bu_{x}+\\frac{1}{2}\\left[ m\\left( |u|^{2}-\\left| u_{x}\\right| ^{2}\\right) \\right] _{x}-\\frac{1}{2} m\\left( u \\bar{u}_{x}-u_{x} \\bar{u}\\right) , \\quad m=u-u_{x x}, \\end{aligned}$$</span></div></div><p>where <span>\\(b&gt;0\\)</span> is an arbitrary positive real constant. Long-time asymptotics of the equation is obtained through the <span>\\(\\bar{\\partial }\\)</span>-steepest descent method. Firstly, based on the spectral analysis of the Lax pair and scattering matrix, the solution of the equation is able to be constructed via solving the corresponding Riemann–Hilbert problem. Then, we present different long-time asymptotic expansions of the solution <i>u</i>(<i>y</i>, <i>t</i>) in different space-time solitonic regions of <span>\\(\\xi =y/t\\)</span>. The half-plane <span>\\({(y,t):-\\infty&lt;y&lt; \\infty , t &gt; 0}\\)</span> is divided into four asymptotic regions: <span>\\(\\xi \\in (-\\infty ,-1)\\)</span>, <span>\\(\\xi \\in (-1,0)\\)</span>, <span>\\(\\xi \\in (0,\\frac{1}{8})\\)</span> and <span>\\(\\xi \\in (\\frac{1}{8},+\\infty )\\)</span>. When <span>\\(\\xi \\)</span> falls in <span>\\((-\\infty ,-1)\\cup (\\frac{1}{8},+\\infty )\\)</span>, no stationary phase point of the phase function <span>\\(\\theta (z)\\)</span> exists on the jump profile in the space-time region. In this case, corresponding asymptotic approximations can be characterized with an <span>\\(N(\\Lambda )\\)</span>-solitons with diverse residual error order <span>\\(O(t^{-1+2\\varepsilon })\\)</span>. There are four stationary phase points and eight stationary phase points on the jump curve as <span>\\(\\xi \\in (-1,0)\\)</span> and <span>\\(\\xi \\in (0,\\frac{1}{8})\\)</span>, respectively. The corresponding asymptotic form is accompanied by a residual error order <span>\\(O(t^{-\\frac{3}{4}})\\)</span>.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-time asymptotics for a complex cubic Camassa–Holm equation\",\"authors\":\"Hongyi Zhang,&nbsp;Yufeng Zhang,&nbsp;Binlu Feng\",\"doi\":\"10.1007/s11005-024-01833-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the Cauchy problem of the following complex cubic Camassa–Holm equation </p><div><div><span>$$\\\\begin{aligned} m_{t}=bu_{x}+\\\\frac{1}{2}\\\\left[ m\\\\left( |u|^{2}-\\\\left| u_{x}\\\\right| ^{2}\\\\right) \\\\right] _{x}-\\\\frac{1}{2} m\\\\left( u \\\\bar{u}_{x}-u_{x} \\\\bar{u}\\\\right) , \\\\quad m=u-u_{x x}, \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(b&gt;0\\\\)</span> is an arbitrary positive real constant. Long-time asymptotics of the equation is obtained through the <span>\\\\(\\\\bar{\\\\partial }\\\\)</span>-steepest descent method. Firstly, based on the spectral analysis of the Lax pair and scattering matrix, the solution of the equation is able to be constructed via solving the corresponding Riemann–Hilbert problem. Then, we present different long-time asymptotic expansions of the solution <i>u</i>(<i>y</i>, <i>t</i>) in different space-time solitonic regions of <span>\\\\(\\\\xi =y/t\\\\)</span>. The half-plane <span>\\\\({(y,t):-\\\\infty&lt;y&lt; \\\\infty , t &gt; 0}\\\\)</span> is divided into four asymptotic regions: <span>\\\\(\\\\xi \\\\in (-\\\\infty ,-1)\\\\)</span>, <span>\\\\(\\\\xi \\\\in (-1,0)\\\\)</span>, <span>\\\\(\\\\xi \\\\in (0,\\\\frac{1}{8})\\\\)</span> and <span>\\\\(\\\\xi \\\\in (\\\\frac{1}{8},+\\\\infty )\\\\)</span>. When <span>\\\\(\\\\xi \\\\)</span> falls in <span>\\\\((-\\\\infty ,-1)\\\\cup (\\\\frac{1}{8},+\\\\infty )\\\\)</span>, no stationary phase point of the phase function <span>\\\\(\\\\theta (z)\\\\)</span> exists on the jump profile in the space-time region. In this case, corresponding asymptotic approximations can be characterized with an <span>\\\\(N(\\\\Lambda )\\\\)</span>-solitons with diverse residual error order <span>\\\\(O(t^{-1+2\\\\varepsilon })\\\\)</span>. There are four stationary phase points and eight stationary phase points on the jump curve as <span>\\\\(\\\\xi \\\\in (-1,0)\\\\)</span> and <span>\\\\(\\\\xi \\\\in (0,\\\\frac{1}{8})\\\\)</span>, respectively. The corresponding asymptotic form is accompanied by a residual error order <span>\\\\(O(t^{-\\\\frac{3}{4}})\\\\)</span>.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01833-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01833-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文我们研究了以下复立方 Camassa-Holm 方程的考奇问题 $$\begin{aligned} m_{t}=bu_{x}+\frac{1}{2}\left[ m\left( |u|^{2}-) \right] _{x}-\frac{1}{2} m\left( |u|^{2}-) \right\right] _{x}-\frac{1}{2} m\left( u \bar{u}_{x}-u_{x} \bar{u}\right) 、\quad m=u-u_{x x}, end{aligned}$$ 其中 \(b>;0)是一个任意的正实数常数。通过 \(\bar{\partial }\)-steepest descent 方法得到方程的长期渐近线。首先,基于拉克斯对和散射矩阵的谱分析,通过求解相应的黎曼-希尔伯特问题,可以构造方程的解。然后,我们在 \(\xi =y/t\) 的不同时空孤子区域给出了解 u(y, t) 的不同长时渐近展开。半平面 ({(y,t):-\infty<y< \infty , t > 0})被分为四个渐近区域:\(-\infty,-1);(-1,0);(0,\frac{1}{8})和(\xi\in (\frac{1}{8},+\infty)。当\(\xi\)落在((-\infty ,-1)\cup (\frac{1}{8},+\infty ))时,在时空区域的跳跃剖面上不存在相位函数\(\theta (z)\)的静止相位点。在这种情况下,相应的渐近近似可以用具有不同残余误差阶数的\(O(t^{-1+2\varepsilon })\)来描述。在跃迁曲线上有四个静止相位点和八个静止相位点,分别为(\xi \in (-1,0)\) 和(\xi \in (0,\frac{1}{8})\)。相应的渐近形式伴随着残余误差阶数(O(t^{-\frac{3}{4}})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Long-time asymptotics for a complex cubic Camassa–Holm equation

Long-time asymptotics for a complex cubic Camassa–Holm equation

Long-time asymptotics for a complex cubic Camassa–Holm equation

In this paper, we investigate the Cauchy problem of the following complex cubic Camassa–Holm equation

$$\begin{aligned} m_{t}=bu_{x}+\frac{1}{2}\left[ m\left( |u|^{2}-\left| u_{x}\right| ^{2}\right) \right] _{x}-\frac{1}{2} m\left( u \bar{u}_{x}-u_{x} \bar{u}\right) , \quad m=u-u_{x x}, \end{aligned}$$

where \(b>0\) is an arbitrary positive real constant. Long-time asymptotics of the equation is obtained through the \(\bar{\partial }\)-steepest descent method. Firstly, based on the spectral analysis of the Lax pair and scattering matrix, the solution of the equation is able to be constructed via solving the corresponding Riemann–Hilbert problem. Then, we present different long-time asymptotic expansions of the solution u(yt) in different space-time solitonic regions of \(\xi =y/t\). The half-plane \({(y,t):-\infty<y< \infty , t > 0}\) is divided into four asymptotic regions: \(\xi \in (-\infty ,-1)\), \(\xi \in (-1,0)\), \(\xi \in (0,\frac{1}{8})\) and \(\xi \in (\frac{1}{8},+\infty )\). When \(\xi \) falls in \((-\infty ,-1)\cup (\frac{1}{8},+\infty )\), no stationary phase point of the phase function \(\theta (z)\) exists on the jump profile in the space-time region. In this case, corresponding asymptotic approximations can be characterized with an \(N(\Lambda )\)-solitons with diverse residual error order \(O(t^{-1+2\varepsilon })\). There are four stationary phase points and eight stationary phase points on the jump curve as \(\xi \in (-1,0)\) and \(\xi \in (0,\frac{1}{8})\), respectively. The corresponding asymptotic form is accompanied by a residual error order \(O(t^{-\frac{3}{4}})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信