拉格朗日共线性上族的存在性

IF 1.3 2区 数学 Q1 MATHEMATICS
Wenyuan Li
{"title":"拉格朗日共线性上族的存在性","authors":"Wenyuan Li","doi":"10.1007/s00208-024-02913-w","DOIUrl":null,"url":null,"abstract":"<p>For an embedded exact Lagrangian cobordism between Legendrian submanifolds in the 1-jet bundle, we prove that a generating family linear at infinity on the Legendrian at the negative end extends to a generating family linear at infinity on the Lagrangian cobordism after stabilization if and only if the formal obstructions vanish. In particular, a Lagrangian filling with trivial stable Lagrangian Gauss map admits a generating family linear at infinity.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of generating families on Lagrangian cobordisms\",\"authors\":\"Wenyuan Li\",\"doi\":\"10.1007/s00208-024-02913-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an embedded exact Lagrangian cobordism between Legendrian submanifolds in the 1-jet bundle, we prove that a generating family linear at infinity on the Legendrian at the negative end extends to a generating family linear at infinity on the Lagrangian cobordism after stabilization if and only if the formal obstructions vanish. In particular, a Lagrangian filling with trivial stable Lagrangian Gauss map admits a generating family linear at infinity.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02913-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02913-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于 1-jet 束中 Legendrian 子满足之间的嵌入精确拉格朗日协整,我们证明,当且仅当形式障碍消失时,负端的 Legendrian 上的线性无穷远处属族扩展为稳定后的拉格朗日协整上的线性无穷远处属族。特别是,具有微不足道的稳定拉格朗日高斯映射的拉格朗日填充,会产生一个无限线性的谱系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Existence of generating families on Lagrangian cobordisms

Existence of generating families on Lagrangian cobordisms

For an embedded exact Lagrangian cobordism between Legendrian submanifolds in the 1-jet bundle, we prove that a generating family linear at infinity on the Legendrian at the negative end extends to a generating family linear at infinity on the Lagrangian cobordism after stabilization if and only if the formal obstructions vanish. In particular, a Lagrangian filling with trivial stable Lagrangian Gauss map admits a generating family linear at infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信