奇异的表面

IF 1.3 2区 数学 Q1 MATHEMATICS
Javier Reyes, Giancarlo Urzúa
{"title":"奇异的表面","authors":"Javier Reyes, Giancarlo Urzúa","doi":"10.1007/s00208-024-02916-7","DOIUrl":null,"url":null,"abstract":"<p>Although exotic blow-ups of the projective plane at <i>n</i> points have been constructed for every <span>\\(n \\ge 2\\)</span>, the only examples known by means of rational blowdowns satisfy <span>\\(n \\ge 5\\)</span>. It has been an intriguing problem whether it is possible to decrease <i>n</i>. In this paper, we construct the first exotic <span>\\({\\mathbb {C}}{\\mathbb {P}}^2 \\# 4 \\overline{{\\mathbb {C}}{\\mathbb {P}}^2}\\)</span> with this technique. We also construct exotic <span>\\(3{\\mathbb {C}}{\\mathbb {P}}^2 \\# b^- \\overline{{\\mathbb {C}}{\\mathbb {P}}^2}\\)</span> for <span>\\(b^-=9,8,7\\)</span>. All of them are minimal and symplectic, as they are produced from projective surfaces <i>W</i> with Wahl singularities and <span>\\(K_W\\)</span> big and nef. In more generality, we elaborate on the problem of finding exotic </p><span>$$\\begin{aligned} (2\\chi ({\\mathcal {O}}_W)-1) {\\mathbb {C}}{\\mathbb {P}}^2 \\# (10\\chi ({\\mathcal {O}}_W)-K^2_W-1) \\overline{{\\mathbb {C}}{\\mathbb {P}}^2} \\end{aligned}$$</span><p>from these Kollár–Shepherd-Barron–Alexeev surfaces <i>W</i>, obtaining explicit geometric obstructions on the corresponding configurations of rational curves.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"72 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exotic surfaces\",\"authors\":\"Javier Reyes, Giancarlo Urzúa\",\"doi\":\"10.1007/s00208-024-02916-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although exotic blow-ups of the projective plane at <i>n</i> points have been constructed for every <span>\\\\(n \\\\ge 2\\\\)</span>, the only examples known by means of rational blowdowns satisfy <span>\\\\(n \\\\ge 5\\\\)</span>. It has been an intriguing problem whether it is possible to decrease <i>n</i>. In this paper, we construct the first exotic <span>\\\\({\\\\mathbb {C}}{\\\\mathbb {P}}^2 \\\\# 4 \\\\overline{{\\\\mathbb {C}}{\\\\mathbb {P}}^2}\\\\)</span> with this technique. We also construct exotic <span>\\\\(3{\\\\mathbb {C}}{\\\\mathbb {P}}^2 \\\\# b^- \\\\overline{{\\\\mathbb {C}}{\\\\mathbb {P}}^2}\\\\)</span> for <span>\\\\(b^-=9,8,7\\\\)</span>. All of them are minimal and symplectic, as they are produced from projective surfaces <i>W</i> with Wahl singularities and <span>\\\\(K_W\\\\)</span> big and nef. In more generality, we elaborate on the problem of finding exotic </p><span>$$\\\\begin{aligned} (2\\\\chi ({\\\\mathcal {O}}_W)-1) {\\\\mathbb {C}}{\\\\mathbb {P}}^2 \\\\# (10\\\\chi ({\\\\mathcal {O}}_W)-K^2_W-1) \\\\overline{{\\\\mathbb {C}}{\\\\mathbb {P}}^2} \\\\end{aligned}$$</span><p>from these Kollár–Shepherd-Barron–Alexeev surfaces <i>W</i>, obtaining explicit geometric obstructions on the corresponding configurations of rational curves.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02916-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02916-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们已经构造出了n点投影面的奇异炸开(n \ge 2\ ),但是通过有理炸开满足(n \ge 5\ )的唯一已知例子。在本文中,我们用这种技术构造了第一个奇异的({\mathbb {C}}{mathbb {P}}^2 \# 4 \overline{{\mathbb {C}}{mathbb {P}}^2}\ )。我们还为 b^-=9,8,7\) 构造了奇异的 \(3{\mathbb {C}{\mathbb {P}}^2 \# b^- \overline{{\mathbb {C}{\mathbb {P}}^2}\) 。所有这些都是最小的和交映的,因为它们都是从具有华尔奇点的投影面 W 和 \(K_W\) big and nef 生成的。在更广泛的意义上,我们将详细讨论寻找异域$$begin{aligned} (2\chi ({\mathcal {O}}_W)-1) {\mathbb {C}}\{mathbb {P}}^2 \# (10\chi ({\mathcal {O}}_W)-K^2_W-1) \overline{{\mathbb {C}}{\mathbb {P}}^2} 的问题。\end{aligned}$$from these Kollár-Shepherd-Barron-Alexeev surfaces W, obtaining explicit geometric obstructions on the corresponding configurations of rational curves.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exotic surfaces

Exotic surfaces

Although exotic blow-ups of the projective plane at n points have been constructed for every \(n \ge 2\), the only examples known by means of rational blowdowns satisfy \(n \ge 5\). It has been an intriguing problem whether it is possible to decrease n. In this paper, we construct the first exotic \({\mathbb {C}}{\mathbb {P}}^2 \# 4 \overline{{\mathbb {C}}{\mathbb {P}}^2}\) with this technique. We also construct exotic \(3{\mathbb {C}}{\mathbb {P}}^2 \# b^- \overline{{\mathbb {C}}{\mathbb {P}}^2}\) for \(b^-=9,8,7\). All of them are minimal and symplectic, as they are produced from projective surfaces W with Wahl singularities and \(K_W\) big and nef. In more generality, we elaborate on the problem of finding exotic

$$\begin{aligned} (2\chi ({\mathcal {O}}_W)-1) {\mathbb {C}}{\mathbb {P}}^2 \# (10\chi ({\mathcal {O}}_W)-K^2_W-1) \overline{{\mathbb {C}}{\mathbb {P}}^2} \end{aligned}$$

from these Kollár–Shepherd-Barron–Alexeev surfaces W, obtaining explicit geometric obstructions on the corresponding configurations of rational curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信