Mohammad Sababheh, Dragan S. Djordjević, Hamid Reza Moradi
{"title":"通过摩尔-彭罗斯逆计算数值半径和规范界限","authors":"Mohammad Sababheh, Dragan S. Djordjević, Hamid Reza Moradi","doi":"10.1007/s11785-024-01560-y","DOIUrl":null,"url":null,"abstract":"<p>This paper presents some inner product inequalities for Hilbert space operators having closed ranges. The obtained results are applied to obtain new bounds for the numerical radius and the operator norm, where the Moore-Penrose inverse plays a keen role.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Radius and Norm Bounds via the Moore-Penrose Inverse\",\"authors\":\"Mohammad Sababheh, Dragan S. Djordjević, Hamid Reza Moradi\",\"doi\":\"10.1007/s11785-024-01560-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents some inner product inequalities for Hilbert space operators having closed ranges. The obtained results are applied to obtain new bounds for the numerical radius and the operator norm, where the Moore-Penrose inverse plays a keen role.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01560-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01560-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical Radius and Norm Bounds via the Moore-Penrose Inverse
This paper presents some inner product inequalities for Hilbert space operators having closed ranges. The obtained results are applied to obtain new bounds for the numerical radius and the operator norm, where the Moore-Penrose inverse plays a keen role.