{"title":"利用芝麻和紫苏蛋白酶水解物减少加热亚麻籽油中的有毒醛类物质","authors":"Jisun Kim, Mi-Ja Kim, YoonHee Lee, JaeHwan Lee","doi":"10.1007/s10068-024-01614-z","DOIUrl":null,"url":null,"abstract":"<p>Reducing ability of sesame meal protein enzymatic hydrolysates (SMH) and perilla protein enzymatic hydrolysates (PMH) on the content of toxic aldehydes including acetaldehyde, formaldehyde, 2-hydroxylhexenal (HHE), and 2-hydroxyl nonenal (HNE), were evaluated in heated flaxseed oil at concentrations ranging from 0.01 to 1.0 g. Adding SMH and PMH decreased the formation of secondary oxidation products and toxic aldehydes during heating. In particular, HHE and HNE were not detected, even at 0.01 g of protein concentration. Free radical scavenging activities in heated flaxseed oil significantly increased when 1.0 g of SMH and PMH were added (<i>p</i> < 0.05). Some volatiles including 2-ethylpyridine, pyrazines, and trimethylamine were formed or increased substantially in flaxseed oils with higher concentrations of SMH and PMH. In general, SMH showed higher antioxidative activity and reducing ability on the toxic aldehydes than PMH. Plant protein enzymatic hydrolysate could control the formation of toxic aldehydes during oxidation of ω-3 edible oil.</p>","PeriodicalId":566,"journal":{"name":"Food Science and Biotechnology","volume":"7 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of toxic aldehydes in heated flaxseed oil using sesame and perilla protein enzymatic hydrolysates\",\"authors\":\"Jisun Kim, Mi-Ja Kim, YoonHee Lee, JaeHwan Lee\",\"doi\":\"10.1007/s10068-024-01614-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reducing ability of sesame meal protein enzymatic hydrolysates (SMH) and perilla protein enzymatic hydrolysates (PMH) on the content of toxic aldehydes including acetaldehyde, formaldehyde, 2-hydroxylhexenal (HHE), and 2-hydroxyl nonenal (HNE), were evaluated in heated flaxseed oil at concentrations ranging from 0.01 to 1.0 g. Adding SMH and PMH decreased the formation of secondary oxidation products and toxic aldehydes during heating. In particular, HHE and HNE were not detected, even at 0.01 g of protein concentration. Free radical scavenging activities in heated flaxseed oil significantly increased when 1.0 g of SMH and PMH were added (<i>p</i> < 0.05). Some volatiles including 2-ethylpyridine, pyrazines, and trimethylamine were formed or increased substantially in flaxseed oils with higher concentrations of SMH and PMH. In general, SMH showed higher antioxidative activity and reducing ability on the toxic aldehydes than PMH. Plant protein enzymatic hydrolysate could control the formation of toxic aldehydes during oxidation of ω-3 edible oil.</p>\",\"PeriodicalId\":566,\"journal\":{\"name\":\"Food Science and Biotechnology\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10068-024-01614-z\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10068-024-01614-z","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Reduction of toxic aldehydes in heated flaxseed oil using sesame and perilla protein enzymatic hydrolysates
Reducing ability of sesame meal protein enzymatic hydrolysates (SMH) and perilla protein enzymatic hydrolysates (PMH) on the content of toxic aldehydes including acetaldehyde, formaldehyde, 2-hydroxylhexenal (HHE), and 2-hydroxyl nonenal (HNE), were evaluated in heated flaxseed oil at concentrations ranging from 0.01 to 1.0 g. Adding SMH and PMH decreased the formation of secondary oxidation products and toxic aldehydes during heating. In particular, HHE and HNE were not detected, even at 0.01 g of protein concentration. Free radical scavenging activities in heated flaxseed oil significantly increased when 1.0 g of SMH and PMH were added (p < 0.05). Some volatiles including 2-ethylpyridine, pyrazines, and trimethylamine were formed or increased substantially in flaxseed oils with higher concentrations of SMH and PMH. In general, SMH showed higher antioxidative activity and reducing ability on the toxic aldehydes than PMH. Plant protein enzymatic hydrolysate could control the formation of toxic aldehydes during oxidation of ω-3 edible oil.
期刊介绍:
The FSB journal covers food chemistry and analysis for compositional and physiological activity changes, food hygiene and toxicology, food microbiology and biotechnology, and food engineering involved in during and after food processing through physical, chemical, and biological ways. Consumer perception and sensory evaluation on processed foods are accepted only when they are relevant to the laboratory research work. As a general rule, manuscripts dealing with analysis and efficacy of extracts from natural resources prior to the processing or without any related food processing may not be considered within the scope of the journal. The FSB journal does not deal with only local interest and a lack of significant scientific merit. The main scope of our journal is seeking for human health and wellness through constructive works and new findings in food science and biotechnology field.