带有移动接触线的卡恩-希利亚德模型和力学的锐面极限

Leonie Schmeller, Dirk Peschka
{"title":"带有移动接触线的卡恩-希利亚德模型和力学的锐面极限","authors":"Leonie Schmeller, Dirk Peschka","doi":"10.1137/23m1546592","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 2, Page 869-890, June 2024. <br/> Abstract. We consider the fluid-structure interaction of viscoelastic solids and Stokesian multiphase fluid flows with moving capillary interfaces and investigate the impact of moving contact lines. Thermodynamic consistency of Lagrangian diffuse and sharp-interface models is ensured even on the discrete level by providing a monolithic incremental time discretization and a finite element space discretization. We numerically analyze how phase-field models converge to sharp-interface limits when the interface thickness tends to zero, [math], and investigate scalings of the Cahn–Hilliard mobility [math] for [math]. In the presence of interfaces, certain sharp-interface limits are only valid for an interval [math], i.e., there is an upper and lower bound on the range of valid scaling exponents [math]. We show that with moving contact lines scaling is more restrictive since [math] causes significant errors due to excess diffusion. Similarly, we demonstrate that [math] leads to nonconvergence to the sharp-interface limit. We propose [math] as a range of exponents that ensure optimal convergence of the phase field dynamics towards the sharp interface dynamics as [math].","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp-Interface Limits of Cahn–Hilliard Models and Mechanics with Moving Contact Lines\",\"authors\":\"Leonie Schmeller, Dirk Peschka\",\"doi\":\"10.1137/23m1546592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale Modeling &amp;Simulation, Volume 22, Issue 2, Page 869-890, June 2024. <br/> Abstract. We consider the fluid-structure interaction of viscoelastic solids and Stokesian multiphase fluid flows with moving capillary interfaces and investigate the impact of moving contact lines. Thermodynamic consistency of Lagrangian diffuse and sharp-interface models is ensured even on the discrete level by providing a monolithic incremental time discretization and a finite element space discretization. We numerically analyze how phase-field models converge to sharp-interface limits when the interface thickness tends to zero, [math], and investigate scalings of the Cahn–Hilliard mobility [math] for [math]. In the presence of interfaces, certain sharp-interface limits are only valid for an interval [math], i.e., there is an upper and lower bound on the range of valid scaling exponents [math]. We show that with moving contact lines scaling is more restrictive since [math] causes significant errors due to excess diffusion. Similarly, we demonstrate that [math] leads to nonconvergence to the sharp-interface limit. We propose [math] as a range of exponents that ensure optimal convergence of the phase field dynamics towards the sharp interface dynamics as [math].\",\"PeriodicalId\":501053,\"journal\":{\"name\":\"Multiscale Modeling and Simulation\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1546592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/23m1546592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多尺度建模与仿真》,第 22 卷第 2 期,第 869-890 页,2024 年 6 月。 摘要我们考虑了粘弹性固体和具有移动毛细管界面的斯托克斯多相流的流固相互作用,并研究了移动接触线的影响。通过提供整体增量时间离散和有限元空间离散,即使在离散水平上也能确保拉格朗日扩散模型和尖锐界面模型的热力学一致性。我们从数值上分析了当界面厚度趋于零时,相场模型如何收敛到尖锐界面极限[math],并研究了[math]的卡恩-希利亚德流动性[math]的标度。在存在界面的情况下,某些尖锐界面极限只对一个区间有效[math],即有效的缩放指数范围有上下限[math]。我们证明,移动接触线的缩放限制更大,因为[math]会因过量扩散而导致显著误差。同样,我们证明[math]会导致不收敛到尖锐界面极限。我们提出了[math]指数范围,以确保相场动力学向[math]尖锐界面动力学的最佳收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp-Interface Limits of Cahn–Hilliard Models and Mechanics with Moving Contact Lines
Multiscale Modeling &Simulation, Volume 22, Issue 2, Page 869-890, June 2024.
Abstract. We consider the fluid-structure interaction of viscoelastic solids and Stokesian multiphase fluid flows with moving capillary interfaces and investigate the impact of moving contact lines. Thermodynamic consistency of Lagrangian diffuse and sharp-interface models is ensured even on the discrete level by providing a monolithic incremental time discretization and a finite element space discretization. We numerically analyze how phase-field models converge to sharp-interface limits when the interface thickness tends to zero, [math], and investigate scalings of the Cahn–Hilliard mobility [math] for [math]. In the presence of interfaces, certain sharp-interface limits are only valid for an interval [math], i.e., there is an upper and lower bound on the range of valid scaling exponents [math]. We show that with moving contact lines scaling is more restrictive since [math] causes significant errors due to excess diffusion. Similarly, we demonstrate that [math] leads to nonconvergence to the sharp-interface limit. We propose [math] as a range of exponents that ensure optimal convergence of the phase field dynamics towards the sharp interface dynamics as [math].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信