ShiPeng Zhou, Shuai Wang, LuJun Huang, Rui Zhang, Xin Chen, FanChao Meng, Run Chen, FengBo Sun, CunYu Wang, Lin Geng
{"title":"粉末冶金法制造的 GH3536-TiB2 复合材料的热变形行为和微观结构演变","authors":"ShiPeng Zhou, Shuai Wang, LuJun Huang, Rui Zhang, Xin Chen, FanChao Meng, Run Chen, FengBo Sun, CunYu Wang, Lin Geng","doi":"10.1007/s11431-023-2562-9","DOIUrl":null,"url":null,"abstract":"<p>The hot deformation behavior and microstructure evolution of GH3536-TiB<sub>2</sub> composites fabricated by powder metallurgy (PM) were examined in the temperature range of 950–1150°C and strain rate range of 0.001–1 s<sup>−1</sup>. The hot compression stress-strain curves and the constitutive equation were obtained. In addition, the hot processing map was drawn, which indicated that the appropriate hot working window was 950–1050°C/0.001–0.1 s<sup>−1</sup> and 1050–1100°C/0.001–0.01 s<sup>−1</sup>. The microstructure analysis showed that the splitting and spheroidization of M<sub>3</sub>B<sub>2</sub> led to a decrease in size and volume fraction at 950–1100°C. At 1150°C, the eutectic microstructure of M<sub>3</sub>B<sub>2</sub> + γ was formed due to the dissolution of M<sub>3</sub>B<sub>2</sub>, which caused macroscopic cracking of the deformed sample. Additionally, the deformation temperature and the strain rate had little effect on the size and volume fraction of M<sub>3</sub>B<sub>2</sub>. Besides, discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) were found in the deformed microstructure, while the former was dominant. Within the test range of this work, the dynamic recrystallization (DRX) fraction of the deformed composites was high due to the bulging nucleation of numerous interfaces. The DRX grain size increased with increasing deformation temperature or decreasing strain rate. Texture analysis showed that the deformation texture of <101>//compression direction RD existed in the matrix when the deformation temperature was below 1100°C, and the texture type became <001>//RD at 1100°C. Additionally, it was also found that the <001>//RD texture was formed in M<sub>3</sub>B<sub>2</sub> under the strain rates of 0.1 and 0.01 s<sup>−1</sup>.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"21 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot deformation behavior and microstructure evolution of GH3536-TiB2 composites fabricated by powder metallurgy\",\"authors\":\"ShiPeng Zhou, Shuai Wang, LuJun Huang, Rui Zhang, Xin Chen, FanChao Meng, Run Chen, FengBo Sun, CunYu Wang, Lin Geng\",\"doi\":\"10.1007/s11431-023-2562-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hot deformation behavior and microstructure evolution of GH3536-TiB<sub>2</sub> composites fabricated by powder metallurgy (PM) were examined in the temperature range of 950–1150°C and strain rate range of 0.001–1 s<sup>−1</sup>. The hot compression stress-strain curves and the constitutive equation were obtained. In addition, the hot processing map was drawn, which indicated that the appropriate hot working window was 950–1050°C/0.001–0.1 s<sup>−1</sup> and 1050–1100°C/0.001–0.01 s<sup>−1</sup>. The microstructure analysis showed that the splitting and spheroidization of M<sub>3</sub>B<sub>2</sub> led to a decrease in size and volume fraction at 950–1100°C. At 1150°C, the eutectic microstructure of M<sub>3</sub>B<sub>2</sub> + γ was formed due to the dissolution of M<sub>3</sub>B<sub>2</sub>, which caused macroscopic cracking of the deformed sample. Additionally, the deformation temperature and the strain rate had little effect on the size and volume fraction of M<sub>3</sub>B<sub>2</sub>. Besides, discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) were found in the deformed microstructure, while the former was dominant. Within the test range of this work, the dynamic recrystallization (DRX) fraction of the deformed composites was high due to the bulging nucleation of numerous interfaces. The DRX grain size increased with increasing deformation temperature or decreasing strain rate. Texture analysis showed that the deformation texture of <101>//compression direction RD existed in the matrix when the deformation temperature was below 1100°C, and the texture type became <001>//RD at 1100°C. Additionally, it was also found that the <001>//RD texture was formed in M<sub>3</sub>B<sub>2</sub> under the strain rates of 0.1 and 0.01 s<sup>−1</sup>.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-023-2562-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2562-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Hot deformation behavior and microstructure evolution of GH3536-TiB2 composites fabricated by powder metallurgy
The hot deformation behavior and microstructure evolution of GH3536-TiB2 composites fabricated by powder metallurgy (PM) were examined in the temperature range of 950–1150°C and strain rate range of 0.001–1 s−1. The hot compression stress-strain curves and the constitutive equation were obtained. In addition, the hot processing map was drawn, which indicated that the appropriate hot working window was 950–1050°C/0.001–0.1 s−1 and 1050–1100°C/0.001–0.01 s−1. The microstructure analysis showed that the splitting and spheroidization of M3B2 led to a decrease in size and volume fraction at 950–1100°C. At 1150°C, the eutectic microstructure of M3B2 + γ was formed due to the dissolution of M3B2, which caused macroscopic cracking of the deformed sample. Additionally, the deformation temperature and the strain rate had little effect on the size and volume fraction of M3B2. Besides, discontinuous dynamic recrystallization (DDRX) and continuous dynamic recrystallization (CDRX) were found in the deformed microstructure, while the former was dominant. Within the test range of this work, the dynamic recrystallization (DRX) fraction of the deformed composites was high due to the bulging nucleation of numerous interfaces. The DRX grain size increased with increasing deformation temperature or decreasing strain rate. Texture analysis showed that the deformation texture of <101>//compression direction RD existed in the matrix when the deformation temperature was below 1100°C, and the texture type became <001>//RD at 1100°C. Additionally, it was also found that the <001>//RD texture was formed in M3B2 under the strain rates of 0.1 and 0.01 s−1.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.