{"title":"从空间到地面联合观测与太阳风动压增强有关的大规模超低频波活动","authors":"XiaoYing Sun, YunPeng Hu, Zeren Zhima, SuPing Duan, FangXian Lv, XuHui Shen","doi":"10.1007/s11431-023-2663-6","DOIUrl":null,"url":null,"abstract":"<p>This study reports the rare ultralow-frequency (ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17 (Geostationary Operational Environmental Satellite) in the magnetosphere, the CSES (China Seismo-Electromagnetic Satellite) in the ionosphere, and the THEMIS ground-based observatories (GBO) GAKO and EAGL in the Earth’s polar region during the main phase of an intense storm on 4 November 2021. Along with the enhanced-pressure solar wind moving tailward, the geomagnetic field structure experienced a large-scale change. From dawn/dusk sides to midnight, the GAKO, EAGL, and GOES-17 sequentially observed the ULF waves in a frequency range of 0.04–0.36 Hz at <i>L</i> shells of ∼5.07, 6.29, and 5.67, respectively. CSES also observed the ULF wave event with the same frequency ranges at wide <i>L</i>-shells of 2.52–6.22 in the nightside ionosphere. The analysis results show that the ULF waves at ionospheric altitude were mixed toroidal-poloidal mode waves. Comparing the ULF waves observed in different regions, we infer that the nightside ULF waves were directly or indirectly excited by the solar wind dynamic pressure increase: in the area of <i>L</i>-shells ∼2.52–6.29, the magnetic field line resonances (FLRs) driven by the solar wind dynamic pressure increase is an essential excitation source; on the other hand, around <i>L</i>∼3.29, the ULF waves can also be excited by the outward expansion of the plasmapause owing to the decrease of the magnetospheric convection, and in the region of <i>L</i>-shells ∼5.19–6.29, the ULF waves are also likely excited by the ion cyclotron instabilities driven by the solar wind dynamic pressure increase.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint observations of the large-scale ULF wave activity from space to ground associated with the solar wind dynamic pressure enhancement\",\"authors\":\"XiaoYing Sun, YunPeng Hu, Zeren Zhima, SuPing Duan, FangXian Lv, XuHui Shen\",\"doi\":\"10.1007/s11431-023-2663-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study reports the rare ultralow-frequency (ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17 (Geostationary Operational Environmental Satellite) in the magnetosphere, the CSES (China Seismo-Electromagnetic Satellite) in the ionosphere, and the THEMIS ground-based observatories (GBO) GAKO and EAGL in the Earth’s polar region during the main phase of an intense storm on 4 November 2021. Along with the enhanced-pressure solar wind moving tailward, the geomagnetic field structure experienced a large-scale change. From dawn/dusk sides to midnight, the GAKO, EAGL, and GOES-17 sequentially observed the ULF waves in a frequency range of 0.04–0.36 Hz at <i>L</i> shells of ∼5.07, 6.29, and 5.67, respectively. CSES also observed the ULF wave event with the same frequency ranges at wide <i>L</i>-shells of 2.52–6.22 in the nightside ionosphere. The analysis results show that the ULF waves at ionospheric altitude were mixed toroidal-poloidal mode waves. Comparing the ULF waves observed in different regions, we infer that the nightside ULF waves were directly or indirectly excited by the solar wind dynamic pressure increase: in the area of <i>L</i>-shells ∼2.52–6.29, the magnetic field line resonances (FLRs) driven by the solar wind dynamic pressure increase is an essential excitation source; on the other hand, around <i>L</i>∼3.29, the ULF waves can also be excited by the outward expansion of the plasmapause owing to the decrease of the magnetospheric convection, and in the region of <i>L</i>-shells ∼5.19–6.29, the ULF waves are also likely excited by the ion cyclotron instabilities driven by the solar wind dynamic pressure increase.</p>\",\"PeriodicalId\":21612,\"journal\":{\"name\":\"Science China Technological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Technological Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11431-023-2663-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-023-2663-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Joint observations of the large-scale ULF wave activity from space to ground associated with the solar wind dynamic pressure enhancement
This study reports the rare ultralow-frequency (ULF) wave activity associated with the solar wind dynamic pressure enhancement that was successively observed by the GOES-17 (Geostationary Operational Environmental Satellite) in the magnetosphere, the CSES (China Seismo-Electromagnetic Satellite) in the ionosphere, and the THEMIS ground-based observatories (GBO) GAKO and EAGL in the Earth’s polar region during the main phase of an intense storm on 4 November 2021. Along with the enhanced-pressure solar wind moving tailward, the geomagnetic field structure experienced a large-scale change. From dawn/dusk sides to midnight, the GAKO, EAGL, and GOES-17 sequentially observed the ULF waves in a frequency range of 0.04–0.36 Hz at L shells of ∼5.07, 6.29, and 5.67, respectively. CSES also observed the ULF wave event with the same frequency ranges at wide L-shells of 2.52–6.22 in the nightside ionosphere. The analysis results show that the ULF waves at ionospheric altitude were mixed toroidal-poloidal mode waves. Comparing the ULF waves observed in different regions, we infer that the nightside ULF waves were directly or indirectly excited by the solar wind dynamic pressure increase: in the area of L-shells ∼2.52–6.29, the magnetic field line resonances (FLRs) driven by the solar wind dynamic pressure increase is an essential excitation source; on the other hand, around L∼3.29, the ULF waves can also be excited by the outward expansion of the plasmapause owing to the decrease of the magnetospheric convection, and in the region of L-shells ∼5.19–6.29, the ULF waves are also likely excited by the ion cyclotron instabilities driven by the solar wind dynamic pressure increase.
期刊介绍:
Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index.
Categories of articles:
Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested.
Research papers report on important original results in all areas of technological sciences.
Brief reports present short reports in a timely manner of the latest important results.