具有广义指数条件的二元分布

Pub Date : 2024-07-01 DOI:10.1515/ms-2024-0059
Božidar V. Popović, Ali İ. Genç, Miroslav M. Ristić
{"title":"具有广义指数条件的二元分布","authors":"Božidar V. Popović, Ali İ. Genç, Miroslav M. Ristić","doi":"10.1515/ms-2024-0059","DOIUrl":null,"url":null,"abstract":"In this work, we construct a new bivariate statistical distribution by the conditionally specified model approach. The conditional distributions follow the well-known generalized exponential distribution which includes the ordinary exponential distribution and is more flexible than gamma and Weibull in some ways. The newly defined distribution has four parameters that increase the flexibility of the model in data fitting. By equating the dependence parameter to zero, the marginal distributions become independent generalized exponential distributions. The new bivariate distribution depends on the classical exponential integral function which is not difficult to evaluate numerically. The basic properties of the distribution such as distribution functions, moments and stress-strength reliability are derived. The parameters are estimated by the method of maximum likelihood. Two real data fitting applications prove its usefulness in case of negatively correlated bivariate data modelling.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bivariate distribution with generalized exponential conditionals\",\"authors\":\"Božidar V. Popović, Ali İ. Genç, Miroslav M. Ristić\",\"doi\":\"10.1515/ms-2024-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we construct a new bivariate statistical distribution by the conditionally specified model approach. The conditional distributions follow the well-known generalized exponential distribution which includes the ordinary exponential distribution and is more flexible than gamma and Weibull in some ways. The newly defined distribution has four parameters that increase the flexibility of the model in data fitting. By equating the dependence parameter to zero, the marginal distributions become independent generalized exponential distributions. The new bivariate distribution depends on the classical exponential integral function which is not difficult to evaluate numerically. The basic properties of the distribution such as distribution functions, moments and stress-strength reliability are derived. The parameters are estimated by the method of maximum likelihood. Two real data fitting applications prove its usefulness in case of negatively correlated bivariate data modelling.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ms-2024-0059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ms-2024-0059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们通过条件指定模型方法构建了一种新的双变量统计分布。条件分布遵循著名的广义指数分布,它包括普通指数分布,在某些方面比伽玛分布和威布尔分布更灵活。新定义的分布有四个参数,增加了数据拟合模型的灵活性。将依赖参数等同于零,边际分布就变成了独立的广义指数分布。新的双变量分布依赖于经典的指数积分函数,不难对其进行数值评估。推导出了分布的基本性质,如分布函数、矩和应力强度可靠性。参数用最大似然法估算。两个实际数据拟合应用证明了它在负相关二元数据建模中的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A bivariate distribution with generalized exponential conditionals
In this work, we construct a new bivariate statistical distribution by the conditionally specified model approach. The conditional distributions follow the well-known generalized exponential distribution which includes the ordinary exponential distribution and is more flexible than gamma and Weibull in some ways. The newly defined distribution has four parameters that increase the flexibility of the model in data fitting. By equating the dependence parameter to zero, the marginal distributions become independent generalized exponential distributions. The new bivariate distribution depends on the classical exponential integral function which is not difficult to evaluate numerically. The basic properties of the distribution such as distribution functions, moments and stress-strength reliability are derived. The parameters are estimated by the method of maximum likelihood. Two real data fitting applications prove its usefulness in case of negatively correlated bivariate data modelling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信