估算稀疏对称矩阵函数迹的随机探测方法分析

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Andreas Frommer, Michele Rinelli, Marcel Schweitzer
{"title":"估算稀疏对称矩阵函数迹的随机探测方法分析","authors":"Andreas Frommer, Michele Rinelli, Marcel Schweitzer","doi":"10.1090/mcom/3984","DOIUrl":null,"url":null,"abstract":"<p>We consider the problem of estimating the trace of a matrix function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In certain situations, in particular if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper A right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from Aune, Simpson, and Eidsvik [Stat. Comput. 24 (2014), pp. 247–263], we also characterize situations in which using just one stochastic vector is always—not only in expectation—better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"37 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices\",\"authors\":\"Andreas Frommer, Michele Rinelli, Marcel Schweitzer\",\"doi\":\"10.1090/mcom/3984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the problem of estimating the trace of a matrix function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis upper A right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In certain situations, in particular if <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"f left-parenthesis upper A right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">f(A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from Aune, Simpson, and Eidsvik [Stat. Comput. 24 (2014), pp. 247–263], we also characterize situations in which using just one stochastic vector is always—not only in expectation—better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3984\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3984","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是估计矩阵函数 f ( A ) f(A) 的迹。在某些情况下,特别是当 f ( A ) f(A) 不能很好地被低秩矩阵逼近时,将基于图着色的探测方法与随机迹估计技术相结合,可以以适度的成本获得精确的逼近结果。不过,迄今为止,这种方法还没有被彻底分析过,而是被实践者用作高效的启发式方法。在本手稿中,我们对随机探测方法进行了详细分析,特别是揭示了随机探测方法的预期近似误差与矩阵维数的关系比非随机探测误差更有利的条件。通过扩展 Aune、Simpson 和 Eidsvik [Stat. Comput. 24 (2014),第 247-263 页] 的结果,我们还描述了仅使用一个随机向量始终优于确定性探测方法的情况,而不仅仅是期望值。几个数值实验说明了我们的理论,并与现有方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices

We consider the problem of estimating the trace of a matrix function f ( A ) f(A) . In certain situations, in particular if f ( A ) f(A) cannot be well approximated by a low-rank matrix, combining probing methods based on graph colorings with stochastic trace estimation techniques can yield accurate approximations at moderate cost. So far, such methods have not been thoroughly analyzed, though, but were rather used as efficient heuristics by practitioners. In this manuscript, we perform a detailed analysis of stochastic probing methods and, in particular, expose conditions under which the expected approximation error in the stochastic probing method scales more favorably with the dimension of the matrix than the error in non-stochastic probing. Extending results from Aune, Simpson, and Eidsvik [Stat. Comput. 24 (2014), pp. 247–263], we also characterize situations in which using just one stochastic vector is always—not only in expectation—better than the deterministic probing method. Several numerical experiments illustrate our theory and compare with existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信