Emanuel Carneiro, Micah Milinovich, Antonio Pedro Ramos
{"title":"傅立叶优化和蒙哥马利对相关猜想","authors":"Emanuel Carneiro, Micah Milinovich, Antonio Pedro Ramos","doi":"10.1090/mcom/3990","DOIUrl":null,"url":null,"abstract":"<p>Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F left-parenthesis alpha comma upper T right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F(\\alpha , T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over long intervals by means of a Fourier optimization framework. The function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper F left-parenthesis alpha comma upper T right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">F(\\alpha , T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\"application/x-tex\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, lies between <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"0.9303\"> <mml:semantics> <mml:mn>0.9303</mml:mn> <mml:annotation encoding=\"application/x-tex\">0.9303</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1.3208\"> <mml:semantics> <mml:mn>1.3208</mml:mn> <mml:annotation encoding=\"application/x-tex\">1.3208</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"20 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fourier optimization and Montgomery’s pair correlation conjecture\",\"authors\":\"Emanuel Carneiro, Micah Milinovich, Antonio Pedro Ramos\",\"doi\":\"10.1090/mcom/3990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F left-parenthesis alpha comma upper T right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">F(\\\\alpha , T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over long intervals by means of a Fourier optimization framework. The function <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper F left-parenthesis alpha comma upper T right-parenthesis\\\"> <mml:semantics> <mml:mrow> <mml:mi>F</mml:mi> <mml:mo stretchy=\\\"false\\\">(</mml:mo> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\\\"false\\\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">F(\\\\alpha , T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1\\\"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, lies between <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"0.9303\\\"> <mml:semantics> <mml:mn>0.9303</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">0.9303</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"1.3208\\\"> <mml:semantics> <mml:mn>1.3208</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">1.3208</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3990\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3990","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
假定黎曼假设,我们通过傅里叶优化框架改进了蒙哥马利函数 F ( α , T ) F(\alpha , T) 在长间隔内平均值的当前上下限。函数 F ( α , T ) F(\alpha , T) 经常被用来研究黎曼zeta函数非三维零点的对相关性。在我们的方法中,有两个想法起着核心作用:(i) 在我们的概念框架中引入新的平均机制;(ii) 充分利用科恩(Cohn)和埃尔基斯(Elkies)为球包装边界引入的测试函数类别,超越了通常的带限函数类别。我们的结论是,这样一个平均值(推测为 1 1)介于 0.9303 0.9303 和 1.3208 1.3208 之间。我们的傅里叶优化框架还改进了目前关于迪里夏特 L L - 函数族中非琐零点的类似问题的边界。
Fourier optimization and Montgomery’s pair correlation conjecture
Assuming the Riemann hypothesis, we improve the current upper and lower bounds for the average value of Montgomery’s function F(α,T)F(\alpha , T) over long intervals by means of a Fourier optimization framework. The function F(α,T)F(\alpha , T) is often used to study the pair correlation of the non-trivial zeros of the Riemann zeta-function. Two ideas play a central role in our approach: (i) the introduction of new averaging mechanisms in our conceptual framework and (ii) the full use of the class of test functions introduced by Cohn and Elkies for the sphere packing bounds, going beyond the usual class of bandlimited functions. We conclude that such an average value, that is conjectured to be 11, lies between 0.93030.9303 and 1.32081.3208. Our Fourier optimization framework also yields an improvement on the current bounds for the analogous problem concerning the non-trivial zeros in the family of Dirichlet LL-functions.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.