{"title":"具有简单边界的严格凸二次问题随机活动集方法","authors":"Ran Gu, Bing Gao","doi":"10.1090/mcom/3982","DOIUrl":null,"url":null,"abstract":"<p>The active set method aims at finding the correct active set of the optimal solution and it is a powerful method for solving strictly convex quadratic problems with bound constraints. To guarantee the finite step convergence, existing active set methods all need strict conditions or some additional strategies, which can significantly impact the efficiency of the algorithm. In this paper, we propose a random active set method that introduces randomness in the active set’s update process. We prove that the algorithm can converge in a finite number of iterations with probability one, without any extra conditions on the problem or any supplementary strategies. At last, numerical experiments show that the algorithm can obtain the correct active set within a few iterations, and it has better efficiency and robustness than the existing methods.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"349 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A random active set method for strictly convex quadratic problem with simple bounds\",\"authors\":\"Ran Gu, Bing Gao\",\"doi\":\"10.1090/mcom/3982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The active set method aims at finding the correct active set of the optimal solution and it is a powerful method for solving strictly convex quadratic problems with bound constraints. To guarantee the finite step convergence, existing active set methods all need strict conditions or some additional strategies, which can significantly impact the efficiency of the algorithm. In this paper, we propose a random active set method that introduces randomness in the active set’s update process. We prove that the algorithm can converge in a finite number of iterations with probability one, without any extra conditions on the problem or any supplementary strategies. At last, numerical experiments show that the algorithm can obtain the correct active set within a few iterations, and it has better efficiency and robustness than the existing methods.</p>\",\"PeriodicalId\":18456,\"journal\":{\"name\":\"Mathematics of Computation\",\"volume\":\"349 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics of Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3982\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3982","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A random active set method for strictly convex quadratic problem with simple bounds
The active set method aims at finding the correct active set of the optimal solution and it is a powerful method for solving strictly convex quadratic problems with bound constraints. To guarantee the finite step convergence, existing active set methods all need strict conditions or some additional strategies, which can significantly impact the efficiency of the algorithm. In this paper, we propose a random active set method that introduces randomness in the active set’s update process. We prove that the algorithm can converge in a finite number of iterations with probability one, without any extra conditions on the problem or any supplementary strategies. At last, numerical experiments show that the algorithm can obtain the correct active set within a few iterations, and it has better efficiency and robustness than the existing methods.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.